CS 110 Introduction to Computer Science - Fall 2008

Time: MW 1:00-3:00 PM
Professor: Dr. Fred Annexstein
Phone: (513)-556-1807
FAX: (513)-556-7326
Email: fred.annexstein (at) uc.edu
Address: 889 Rhodes Hall

General Information:
Info for this course will be posted on the public web and the BLACKBOARD system and will be regularly updated. You should regularly check this site and BLACKBOARD for announcements, updated syllabus, homework assignments, etc.

Motivation and Objectives:
This class is designed as an introduction to the concepts and practice of Computer Science. Computer scientists use a wide variety of tools, techniques and mathematical language to model computational problems and the world. In this class students will be introduced to some of these tools, techniques, and language. We will do many hands-on exercises to develop our facility with computers, our intuition in problem solving, and our skills in numerical literacy and critical analysis. We will consider the historical background of computing, and be exposed to a variety of beautiful computational objects and concepts. We will demonstrate some intriguing computing paradoxes and discuss some open scientific questions. Students will leave the class with a better understanding of the nature of computers and computer programming, and will be better prepared to model and solve real-world problems using these machines. During the term students will be exposed to several of the recognized sub-fields of the discipline of Computer Science, namely, algorithms, intelligent systems, databases, networks & communications, and architectures & systems. There will be general information about the CS profession, employment prospects, survival strategies in the major, time management skills, and the various academic resources available at UC. We expect to expose students to some programming languages and software application tools in a laboratory setting, including, Excel, Matlab, Python, and Scratch.

Grading Scheme:
The grading for this class will be based on the contents in a portfolio created by each student. The portfolio will be maintained on a public website and contain the student’s work on homework projects and approximately 8 laboratory modules. The student will receive quarterly feedback on the state of