Alpha Beta Pruning for Expected Minimax

Anca Ralescu

November 9, 2007

Recall the the Expected Minimax results from the Minimax strategy when chance nodes are considered.

As we have seen, the Minimax strategy, extended to this case calls for the definition of the of the Minimax value for a node n in three different situations:

- 1. n is a terminal node
- 2. n is a MAX node
- 3. n is a MIN node
- 4. n is a CHANCE node

For the first three cases the **minimax value** is calculated in the usual manner; for the third case, its definition must be extended:

Recall that a chance node n really means that there is a probability distribution for the actions taken by the player whose turn is next: Max or Min.

More precisely,

$$n \equiv \{(s_1^n, p_1^n), \dots, (s_m^n, p_m^n n)\}$$

where s_j , $j = 1, ..., m^n$ denote the successors for the node n, and for each j, $p_j^n \equiv P(s_j^n)$, $0 \le p_j^n \le 1$; and $\sum_{j=1}^m p_j^n = 1$.

If we denote by $Successors(n) = \{s; s \text{ is a successor of } n\}$, the chance node induces a probability distribution on the minimax values of its elements.

In this case the **minimax value** for n is then defined as the **expected value** of the values of its successors nodes. The **minimax value** is referred now to as **expected minimax value**, which is defined as:

$$ExpectedMiniMax(n) = \begin{cases} Utility(n) & \text{if } n \text{ is a terminal node} \\ Max_{s \in Successors(n)} ExpectedMiniMax(s) & \text{if } n \text{ is a } MAX \text{ node} \\ Min_{s \in Successors(n)} ExpectedMiniMax(s) & \text{if } n \text{ is a } MIN \text{ node} \\ ExpectedValue(ExpectedMiniMax(s)) & \text{if } n \text{ is a } CHANCE \text{ node} \end{cases}$$

Example Let us consider the following imaginary game:

MAX actions: $\{M_1, M_2, M_3\}$ Each of these leads to chance node;

 $CHANCE : \{C_{M1}, C_{M2}, C_{M3}\};$ Let us assume the following probability distributions for each of these:

$$C_{M1} : \{ (m_{11}, 1/2), (m_{12}, 1/2) \}$$
$$C_{M2} : \{ (m_{21}, 1/4), (m_{22}, 3/4) \}$$
$$C_{M3} : \{ (m_{31}, 2/3), (m_{32}, 1/3) \}$$

where m_{ij} denotes the *MIN* node corresponding to the action M_i of the *MAX* player and *j*th "branch" of the corresponding *CHANCE* node.

node	utility value
M_{111}	2
M_{112}	6
M_{113}	1
M_{121}	7
M_{122}	4
M_{123}	2
M_{211}	8
M_{212}	9
M_{213}	-3
M_{221}	7
M_{222}	2
M_{223}	3
M_{311}	1
M_{312}	5
M_{313}	3
M_{321}	-2
M_{322}	6
M_{323}	3

Table 1: Utility: terminal nodes

MIN: Each MIN node is now followed by **ONE** (to make things easier) CHANCE node. For example, assuming that each chance node generates three equally likely outcomes, we would have

$$C_{m_{ij}}: \{ (M_{ij1}:1/3), (M_{ij2}:1/3), (M_{ij3}:1/3) \}$$

where M_{ijk} , i = 1, ..., 3; j = 1, ..., 2; k = 1, ..., 3, denote the MAX nodes generated from the last CHANCE node.

Assume that M_{ijk} , i = 1, ..., 3; j = 1, ..., 2; k = 1, ..., 3 are all terminal nodes with utility value shown in Table ??.

Back up the utility up one level in the tree to obtain the result shown in Table ??.

This leads us to $\alpha - \beta$ pruning for this. The key idea is to identify bounds for the chance nodes.

Table 2. Othinty.backed up one level								
node	utility value	node	Expected minimax					
			for chance nodes $C_{m_{ij}}$					
M_{111}	2							
M_{112}	6	$C_{m_{11}}$	1/3(2+6+1) = 3					
M_{113}	1							
M_{121}	7							
M_{122}	4	$C_{m_{12}}$	1/3(7+4+1) = 4					
M_{123}	1							
M_{211}	8							
M_{212}	9	$C_{m_{21}}$	1/3(8+9-2) = 5					
M_{213}	-2							
M_{221}	7							
M_{222}	2	$C_{m_{22}}$	1/3(7+2+3) = 4					
M_{223}	3							
M_{311}	1	$C_{m_{31}}$	1/3(1+5+3) = 3					
M_{312}	5							
M_{313}	3							
M_{321}	-3	$C_{m_{32}}$	1/3(-3+6+3) = 2					
M_{322}	6							
M_{323}	3							

Table 2: Utility:backed up **one** level

Table 3: Utility:backed up **two** levels

Table 3: Utility:backed up two levels								
node	utility value	node	Expected minimax	node	Expected minimax			
			for chance nodes $C_{m_{ij}}$		m_{ij}			
M_{111}	2							
M_{112}	6	$C_{m_{11}}$	1/3(2+6+1) = 3	m_{11}	3			
M_{113}	1							
M_{121}	7							
M_{122}	4	$C_{m_{12}}$	1/3(7+4+1) = 4	m_{12}	4			
M_{123}	1							
M_{211}	8							
M_{212}	9	$C_{m_{21}}$	1/3(8+9-2) = 5	m_{21}	5			
M_{213}	-2							
M_{221}	7							
M_{222}	2	$C_{m_{22}}$	1/3(7+2+3) = 4	m_{22}	4			
M_{223}	3							
M_{311}	1	$C_{m_{31}}$	1/3(1+5+3) = 3	m_{31}	3			
M_{312}	5							
M_{313}	3							
M_{321}	-3	$C_{m_{32}}$	1/3(-3+6+3) = 2	m_{32}	2			
M_{322}	6							
M_{323}	3							

node	utility value	node	Expected minimax	node	Expected minimax	node	Expected minimax	
nouo	atility value	nouo	for chance nodes $C_{m_{ij}}$	m_{ij}		nouo	C_{Mi}	
M_{111}	2				;			
M_{112}	6	$C_{m_{11}}$	1/3(2+6+1) = 3	m_{11}	3	C_{M1}	3.5	
M_{113}	1		, , , ,					
M_{121}	7							
M_{122}	4	$C_{m_{12}}$	1/3(7+4+1) = 4	m_{12}	4			
M_{123}	1							
M_{211}	8							
M_{212}	9	$C_{m_{21}}$	1/3(8+9-2) = 5	m_{21}	5	C_{M2}	17/4	
M_{213}	-2							
M_{221}	7							
M_{222}	2	$C_{m_{22}}$	1/3(7+2+3) = 4	m_{22}	4			
M_{223}	3							
M_{311}	1	$C_{m_{31}}$	1/3(1+5+3) = 3	m_{31}	3	C_{M3}	11/3	
M_{312}	5							
M_{313}	3							
M_{321}	-3	$C_{m_{32}}$	1/3(-3+6+3) = 2	m_{32}	2			
M_{322}	6							
M_{323}	3							

Table 4: Utility:backed up **three** levels

Table 5: Utility:backed up **four** levels

node	utility value	node	Expected	node	Expected	node	Expected	node	Expected
			for chance nodes $C_{m_{ij}}$		m_{ij}		C_{Mi}		MAX
			minimax		minimax		minimax	1	\min
M_{111}	2								
M_{112}	6	$C_{m_{11}}$	1/3(2+6+1) = 3	m_{11}	3	C_{M1}	3.5		
M_{113}	1								
M_{121}	7								
M_{122}	4	$C_{m_{12}}$	1/3(7+4+1) = 4	m_{12}	4			MAX	17/4
M_{123}	1								
M_{211}	8								
M_{212}	9	$C_{m_{21}}$	1/3(8+9-2) = 5	m_{21}	5	C_{M2}	17/4		
M_{213}	-2								
M_{221}	7								
M_{222}	2	$C_{m_{22}}$	1/3(7+2+3) = 4	m_{22}	4				
M_{223}	3								
M_{311}	1	$C_{m_{31}}$	1/3(1+5+3) = 3	m_{31}	3	C_{M3}	11/3		
M_{312}	5								
M_{313}	3								
M_{321}	-3	$C_{m_{32}}$	1/3(-3+6+3) = 2	m_{32}	2				
M_{322}	6								
M_{323}	3								