Alpha Beta Pruning for Expected Minimax

Anca Ralescu

November 9, 2007

Recall the the Expected Minimax results from the Minimax strategy when chance nodes are considered.

As we have seen, the Minimax strategy, extended to this case calls for the definition of the of the Minimax value for a a node n in three different situations:

1. n is a terminal node
2. n is a $M A X$ node
3. n is a $M I N$ node
4. n is a $C H A N C E$ node

For the first three cases the minimax value is calculated in the usual manner; for the third case, its definition must be extended:

Recall that a chance node n really means that there is a probability distribution for the actions taken by the player whose turn is next: Max or Min.

More precisely,

$$
n \equiv\left\{\left(s_{1}^{n}, p_{1}^{n}\right), \ldots,\left(s_{m}^{n}, p_{m}^{n} n\right)\right\}
$$

where $s_{j}, j=1, \ldots, m^{n}$ denote the successors for the node n, and for each $j, p_{j}^{n} \equiv P\left(s_{j}^{n}\right), 0 \leq p_{j}^{n} \leq$ $1 ;$ and $\sum_{j=1}^{m} p_{j}^{n}=1$.

If we denote by Successors $(n)=\{s ; s$ is a successor of $n\}$, the chance node induces a probability distribution on the minimax values of its elements.

In this case the minimax value for n is then defined as the expected value of the values of its successors nodes. The minimax value is referred now to as expectedminimax value, which is defined as:

$$
\text { ExpectedMiniMax }(n)= \begin{cases}\operatorname{Utility}(n) & \text { if } n \text { is a terminal node } \\ \operatorname{Max}_{s \in \operatorname{Successors}(n)} \text { ExpectedMiniMax }(s) & \text { if } n \text { is a MAX node } \\ \operatorname{Min}_{s \in \operatorname{Successors}(n)} \text { ExpectedMiniMax }(s) & \text { if } n \text { is a MIN node } \\ \text { ExpectedValue(ExpectedMiniMax }(s)) & \text { if } n \text { is a CHANCE node }\end{cases}
$$

Example Let us consider the following imaginary game:
MAX actions: $\left\{M_{1}, M_{2}, M_{3}\right\}$ Each of these leads to chance node;
CHANCE : $\left\{C_{M 1}, C_{M 2}, C_{M 3}\right\}$; Let us assume the following probability distributions for each of these:

$$
\begin{aligned}
& C_{M 1}:\left\{\left(m_{11}, 1 / 2\right),\left(m_{12}, 1 / 2\right)\right\} \\
& C_{M 2}:\left\{\left(m_{21}, 1 / 4\right),\left(m_{22}, 3 / 4\right)\right\} \\
& C_{M 3}:\left\{\left(m_{31}, 2 / 3\right),\left(m_{32}, 1 / 3\right)\right\}
\end{aligned}
$$

where $m_{i j}$ denotes the $M I N$ node corresponding to the action M_{i} of the $M A X$ player and j th "branch" of the corresponding $C H A N C E$ node.

Table 1: Utility: terminal nodes

node	utility value
M_{111}	2
M_{112}	6
M_{113}	1
M_{121}	7
M_{122}	4
M_{123}	2
M_{211}	8
M_{212}	9
M_{213}	-3
M_{221}	7
M_{222}	2
M_{223}	3
M_{311}	1
M_{312}	5
M_{313}	3
M_{321}	-2
M_{322}	6
M_{323}	3

$M I N:$ Each $M I N$ node is now followed by ONE (to make things easier) CH ANCE node. For example, assuming that each chance node generates three equally likely outcomes, we would have

$$
C_{m_{i j}}:\left\{\left(M_{i j 1}: 1 / 3\right),\left(M_{i j 2}: 1 / 3\right),\left(M_{i j 3}: 1 / 3\right)\right\}
$$

where $M_{i j k}, i=1, \ldots, 3 ; j=1, \ldots, 2 ; k=1, \ldots, 3$, denote the $M A X$ nodes generated from the last $C H A N C E$ node.

Assume that $M_{i j k}, i=1, \ldots, 3 ; j=1, \ldots, 2 ; k=1, \ldots, 3$ are all terminal nodes with utility value shown in Table ??.

Back up the utility up one level in the tree to obtain the result shown in Table ??.
This leads us to $\alpha-\beta$ pruning for this. The key idea is to identify bounds for the chance nodes.

Table 2: Utility:backed up one level

node	utility value	node	Expected minimax for chance nodes $C_{m_{i j}}$
M_{111}	2		
M_{112}	6	$C_{m_{11}}$	$1 / 3(2+6+1)=3$
M_{113}	1		
M_{121}	7		
M_{122}	4	$C_{m_{12}}$	$1 / 3(7+4+1)=4$
M_{123}	1		
M_{211}	8		
M_{212}	9	$C_{m_{21}}$	$1 / 3(8+9-2)=5$
M_{213}	-2		
M_{221}	7		
M_{222}	2	$C_{m_{22}}$	$1 / 3(7+2+3)=4$
M_{223}	3		
M_{311}	1	$C_{m_{31}}$	$1 / 3(1+5+3)=3$
M_{312}	5		
M_{313}	3		
M_{321}	-3	$C_{m_{32}}$	$1 / 3(-3+6+3)=2$
M_{322}	6		
M_{323}	3		

Table 3: Utility:backed up two levels

node	utility value	node	Expected minimax for chance nodes $C_{m_{i j}}$	node	Expected minimax $m_{i j}$
M_{111}	2	$C_{m_{11}}$	$1 / 3(2+6+1)=3$	m_{11}	3
M_{112}	6				
M_{113}	1				
M_{121}	7	$C_{m_{12}}$	$1 / 3(7+4+1)=4$	m_{12}	4
M_{122}	4		$1 / 3(8+9-2)=5$	m_{21}	5
M_{123}	1				
M_{211}	8	$C_{m_{21}}$	$1 / 3(7+2+3)=4$	m_{22}	4
M_{212}	9				
M_{213}	-2				
M_{221}	7	$C_{m_{22}}$	$1 / 3(1+5+3)=3$	m_{31}	3
M_{222}	2	$C_{m_{31}}$	$1 / 3$		
M_{223}	3				
M_{311}	1				
M_{312}	5	$C_{m_{32}}$	$1 / 3(-3+6+3)=2$	m_{32}	
M_{313}	3				2
M_{321}	-3				
M_{322}	6	3			
M_{323}	3				

Table 4: Utility:backed up three levels

node	utility value	node	Expected minimax for chance nodes $C_{m_{i j}}$	node	Expected minimax $m_{i j}$	node	Expected minimax $C_{M i}$
M_{111}	2						
M_{112}	6	$C_{m_{11}}$	$1 / 3(2+6+1)=3$	m_{11}	3	$C_{M 1}$	3.5
M_{113}	1						
M_{121}	7						
M_{122}	4	$C_{m_{12}}$	$1 / 3(7+4+1)=4$	m_{12}	4		
M_{123}	1						
M_{211}	8						
M_{212}	9	$C_{m_{21}}$	$1 / 3(8+9-2)=5$	m_{21}	5	$C_{M 2}$	17/4
M_{213}	-2						
M_{221}	7						
M_{222}	2	$C_{m_{22}}$	$1 / 3(7+2+3)=4$	m_{22}	4		
M_{223}	3						
M_{311}	1	$C_{m_{31}}$	$1 / 3(1+5+3)=3$	m_{31}	3	$C_{M 3}$	11/3
M_{312}	5						
M_{313}	3						
M_{321}	-3	$C_{m_{32}}$	$1 / 3(-3+6+3)=2$	m_{32}	2		
M_{322}	6						
M_{323}	3						

Table 5: Utility:backed up four levels

node	utility value	node	Expected for chance nodes $C_{m_{i j}}$ minimax	node	$\begin{gathered} \hline \text { Expected } \\ m_{i j} \\ \text { minimax } \\ \hline \end{gathered}$	node	$\begin{gathered} \hline \text { Expected } \\ C_{M i} \\ \text { minimax } \\ \hline \end{gathered}$	node	$\begin{gathered} \hline \text { Expected } \\ M A X \\ \text { minimax } \\ \hline \end{gathered}$
M_{111}	2								
M_{112}	6	$C_{m_{11}}$	$1 / 3(2+6+1)=3$	m_{11}	3	$C_{M 1}$	3.5		
M_{113}	1								
M_{121}	7								
M_{122}	4	$C_{m_{12}}$	$1 / 3(7+4+1)=4$	m_{12}	4			$M A X$	17/4
M_{123}	1								
M_{211}	8								
M_{212}	9	$C_{m_{21}}$	$1 / 3(8+9-2)=5$	m_{21}	5	$C_{M 2}$	17/4		
M_{213}	-2								
M_{221}	7								
M_{222}	2	$C_{m_{22}}$	$1 / 3(7+2+3)=4$	m_{22}	4				
M_{223}	3								
M_{311}	1	$C_{m_{31}}$	$1 / 3(1+5+3)=3$	m_{31}	3	$C_{M 3}$	11/3		
M_{312}	5								
M_{313}	3								
M_{321}	-3	$C_{m 32}$	$1 / 3(-3+6+3)=2$	m_{32}	2				
M_{322}	6								
M_{323}	3								

