
Achieving preferable performances for image compression usually
requires an efficient representation of images. To assure an
efficient representation of images in scientific and commercial
applications, image denoising is a favorable processing step. A
general solution approach is to convert the contaminated image
into another domain through a transformation and perform the
denoising operations in that domain before converting back to the
original image domain.

Currently, one of the best approaches used for denoising is to
use the wavelet transforms. Given a noisy signal y, as the sum of
the original signal x and the noise b, a discrete wavelet transform
(DWT) is applied on this contaminated signal data to produce
subbands of wavelet coefficients. The most commonly used
denoising method based on wavelet coefficients is the soft
thresholding strategy, which has been theoretically justified by
Donoho and Johnstone in [1,2]. Most importantly, they have
derived a minimax square error bound for soft thresholding
functions that depend on data sample size and the level of additive
Gaussian noise contamination. Some seminal works include [3-5].
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Figure 1: A wavelet denoising flowchart
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Table 4 : Comparison on PSNR (dB) with SURE-LET (non-redundant).
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Abstract
This paper proposes a new wavelet based image denoising method
by using linear elementary parameterized denoising functions in
the form of derivatives of Gaussian of a set of estimated wavelet
coefficients. These coefficients are derived from an improved
context modeling procedure in terms of mean square error
estimation combining inter- and intra-subband data. The denoising
method results in a two-step denoising effort which outperforms
the state-of-the-art non-redundant methods. This method is also
extended to the overcomplete wavelet expansion by applying cycle
spinning, which provides additional denoising performance and
yields significantly better results than the orthogonal transform.

Based on the motivations, we split the minimization of the squared
error between the estimate and the original data into two separated
operations: 1).To reduce . 2).To optimize the soft thresholding
denoising function.

For Operation 1, our suggestion is to apply a linear estimator
like: (3)
where is the subband parameter vector derived from :

(4)

and is a vector composed by certain wavelet coefficients.
Thus Z does not degrade the signal X but results in a lower noisy
standard deviation. A good candidate for Z could be the smoothing
estimator using context modeling proposed in [4]. However, we
improve it by the following.

We perform a 4-level DWT operation on the incoming noise
image y, to produce Y with subband designations shown in Figure
2. For Subband 1-6, use a neighborhood to build up a 34 by 1
vector. For Subband 7-12, just use a neighborhood of size 3 by 3 to
build up a 9 by 1 vector. Meanwhile, instead of directly applying Z
as an alternate of Y in the optimization of soft thresholding
operation, we add portion of Y to this Z so that to construct a
newer smoothed version. The expression would be like below
where values of A are listed in Table 1.

(5)

( )n y�

5. Results

We propose a simple but effective wavelet based denoising
method. The wavelet coefficients we used for denoising operations
are estimated from an improved context modeling based on the
minimization of the mean squared error. The function of soft
thresholding is a sum of weighted derivatives of Gaussian where
the weights are derived by adding additional offset values to an
analytical close-form solution. Meanwhile, its overcomplete
expansion has also been exploited by applying the classical cycle
spinning strategy so as to minimize the undesired Pseudo-Gibbs
phenomena introduced by the standard orthogonal wavelet
transform. The novelty of this approach is the two step processing
scheme: improved context modeling followed by the optimization
of soft-thresholding function. The concatenation of two steps of
the proposed denoising approach yields preferable results in term
of PSNR.

Figure 3: The Boat image (A) Noise-free image, (B) Noisy image with noise level of 50,
(C) Result using SURE-LET [8] , (D) Result using BLS_GSM [3], (E) Result using BM3D
[7], (F) Result using our method under overcomplete expansion.

The theoretical result of Donoho and Johnstone in [1,2] shows that
(1)

for all            , and for an estimation:                                           (2)
where 

the noise level and are
i.i.d. N(0,1). And and for N total
samples.

Eq(1) means that in order to achieve the minimax upper bound
of the soft thresholding function Eq(2) has to be
followed.

As indicated in the typical denoising flow chart shown in
Figure 1 [5], to apply discrete wavelet transform (DWT) to the
noisy image data is to produce J noisy wavelet
subband (subimage) . The denoising
operation is to produce with each being an estimator
of , and the inverse discrete wavelet transform(IDWT) is to
produce estimate of the noise free data x. The additive noise b is
Gaussian noise with the distribution of .

To summarize, our research motivation is to reduce the square

4. Overcomplete expansion
One may often observe Pseudo-Gibbs phenomena in the area of
edge and ridge discontinuities in images after standard wavelet
denoising. These disturbing visual artifacts are generally caused by
the shift variance, an intrinsic drawback of DWT. According [6],
the actual positions of the image discontinuities play a significant
role for the sizes of these artifacts.

Since the artifacts are highly related to the alignment between
the features in the signal and the features of basis wavelet applied,
it is easy to reason that similar signals but with only a different
alignment would generate fewer artifacts after being wavelet
denoised. Thus, by carrying out the procedure called cycle spinning
[6], we can shift the signal to change the positions of features, so
that the artifacts produced in the denoised image can be diminished
by re-aligning the given noisy image. In cases of 2D signal,
translation-invariance can be achieved by shifting the pixels of
columns and/or rows. Usually only a small number of shifts like
20~30 may be sufficient in practice.

Noise level 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Lena
SURE-LET* 38.25 35.08 33.31 32.06 31.10 30.33 28.22 25.57
BLS-GSM* 38.49 35.61 33.90 32.66 31.69 30.46 28.61 25.64

BM3D 38.72 35.93 34.27 33.05 32.08 31.26 28.86 25.57
Proposed 39.36 36.10 34.08 32.65 31.81 30.98 28.87 25.95
Method Boat 

SURE-LET 37.13 33.53 31.57 30.22 29.20 28.39 26.20 23.61
BLS-GSM 36.97 33.58 31.70 30.38 29.37 28.56 26.35 23.75

BM3D 37.28 33.92 32.14 30.88 29.91 29.12 26.64 23.74
Proposed 37.91 34.50 32.40 30.90 29.90 29.12 27.19 24.63
Method Goldhill

SURE-LET 36.85 33.20 31.37 30.17 29.30 28.61 26.83 24.69
BLS-GSM 37.00 33.38 31.53 30.32 29.42 28.72 26.87 24.63

BM3D 37.14 33.62 31.86 30.72 29.85 29.16 27.08 24.45
Proposed 38.04 34.57 32.60 31.32 30.55 30.02 28.54 26.18
Method Man 

SURE-LET 37.28 33.42 31.40 30.07 29.10 28.35 26.38 24.05
BLS-GSM 37.44 33.56 31.49 30.13 29.14 28.37 26.35 23.82

BM3D 37.82 33.98 31.93 30.59 29.62 28.86 26.59 23.97
Proposed 38.12 34.14 32.16 30.84 30.03 29.46 27.72 25.43

Table 5: Comparison on PSNR (dB) with some most efficient denoising methods.

* for SURE-LET and BLS_GSM, apply redundant wavelet transform

Noise level 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Lena
SURE-LET 37.96 34.56 32.68 31.37 30.36 29.56 27.37 24.66

Proposed Method 38.92 35.42 33.50 31.89 31.16 30.32 28.17 25.32
Method Boat

SURE-LET 36.70 32.90 30.85 29.47 28.44 27.63 25.50 22.97

Proposed Method 37.14 33.65 31.70 30.28 29.23 28.50 26.40 24.10
Method Goldhill

SURE-LET 36.53 32.69 30.76 29.52 28.60 27.89 26.06 23.82

Proposed Method 37.62 34.02 32.17 30.87 30.10 29.50 27.80 25.47
Method Man

SURE-LET 36.95 32.87 30.78 29.44 28.47 27.71  25.76 23.42

Proposed 37.56 33.56 31.59 30.28 29.49 28.72 27.03 24.71

the proposed method when applying overcomplete expansion, we
show the denoising results of the six images in Table 5 using BLS-
GSM [3], SURE-LET [8] and BM3D [7], which is a non-wavelet
state-of-the-art denoising approach. We also provide a set of images
for visual comparison.
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Our proposed method is compared with the SURE-LET [5], which is
the most efficient denoising technique available based on non-
redundant orthogonal wavelet transform. Table 4 summarizes the
results, which show that our method carries about 0.4~1 dB
improvement on average. And the computation time is around 3~5
seconds on a regular PC for the whole denoising process.

In addition, in order to demonstrate the denoising efficiency of

Subbands

Noise Level 1-3 4-6 7-9 10-12

[0,5) 0.5 0.2 0.05 0

[5,10) 0.7 0.4 0.15 0.05

[10,15) 0.7 0.45 0.2 0.05

[15,20) 0.7 0.5 0.3 0.1

[20,25) 0.75 0.55 0.35 0.15

[25,30) 0.8 0.6 0.4 0.2

[30,50) 0.9 0.8 0.6 0.3
[50,100] 0.9 0.8 0.7 0.5

Subbands

Noise level 1-3 4-6 7-9 10-12

[0,5) 0.2 0.1 0 0
[5,10) 0.3 0.2 0.1 0

[10,15) 0.2 0.3 0.1 0
[15,20) 0.2 0.3 0.2 0.1
[20,25) 0.1 0.4 0.2 0.1
[25,30) 0.1 0.4 0.3 0.1
[30,50) 0.1 0.3 0.4 0.1
[50,100] 0 0.2 0.4 0.3

Subbands

Noise level 1-3 4-6 7-9 10-12

[0,5) 0.1 0 0 0.1
[5,10) 0.1 0 0 0.1
[10,15) 0.1 0 0 0.1
[15,20) 0.1 0 0 0.1
[20,25) 0.1 0 0 0.1
[25,30) 0.1 0 0 0.1
[30,50) 0 0 0 0.1

[50,100] 0.1 0 0 0.1

Table 3: Values of delta a2 under different 
subbands and noise levels.

Table 2: Values of delta a1 under different 
subbands and noise levels.

Figure 2: Subband designations
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Table 1: Values of A at different subbands
and  noise levels.

(1 )newZ A Z A Y� � � � �
For Operation 2, a soft thresholding denoising operator with a

linear combination of parameterized derivative of Gaussian
(DOG) formulations was proposed in [5]. Although the analytical
solution given in [5] is neither directly applicable on Z nor Znew,
we can still use it to derive an alternate by applying additional
offset values on these solutions in order to obtain the final weights
in the following expression:

(6)
where , and where
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The values of delta a1 and delta a2 can be obtained from
experimental results, which we list based on different noise levels
and subband groups in Table 2 and Table 3, respectively.


