Direct evidence for intrinsically broken $8-N$ coordination rule in melt-quenched glasses by a novel method

P. Boolchand and W. J. Bresser

Physics Department, University of Cincinnati, Cincinnati, Ohio 45221

M. Tenhover

Department of Research and Development, The Standard Oil Company (Ohio), Warrensville Heights, Ohio 44128

(Received 3 November 1981)

The sign of the electric field gradient at 129I atoms formed from nuclear decay of 129mTe parent atoms undergoes a change from positive to negative when the parent-atom coordination changes from 2 to 3. This provides a sensitive way to discriminate twofold from threefold Te sites in glasses by use of 129I Mössbauer emission spectroscopy. Evidence for some threefold Te sites in As$_x$Te$_{1-x}$ glasses is presented indicating the first clear breakdown of $8-N$ coordination rule intrinsic to a glass network.

The starting point for modeling atomic networks of the good glass formers Ge$_x$X$_{1-x}$ and As$_x$X$_{1-x}$, where X = S, Se, and Te, has been the assumption that the $8-N$ coordination rule of valence is locally satisfied. This rule specifies that the chalcogen (X), As, and Ge atoms are, respectively, twofold, threefold, and fourfold coordinated. A breakdown in this rule, for impurity atoms incorporated in network glasses, first emerged when successful doping of amorphous SiH$_x$ by As dopant was demonstrated. In this work we provide direct microscopic evidence for a breakdown of this rule intrinsic to the host network of melt quenched As$_x$Te$_{1-x}$ glasses. This evidence has been obtained by a novel method—129I Mössbauer emission spectroscopy4—which provides a simpler and more precise alternative to diffraction methods4 to probe the chalcogen coordination in glasses.

The success of the present method rests on the experimental fact that the coordination number of 129mTe atoms directly determines the sign of the electric field gradient (eV_{zz}) at the 129I daughter atoms which are formed as a consequence of nuclear transmutation. When 129mTe atoms are twofold coordinated (π bonded) as in the elemental chalcogens [see Fig. 1(a)], a bond rearrangement1 accompanies the Te\rightarrowI transformation; one of the Te π bonds breaks while the other π bond transforms into a σ bond leaving the 129I daughter nominally onefold coordinated. In such a configuration experiences a positive4 eV_{zz}. On the other hand, when 129mTe atoms are threefold coordinated (π bonded), there is overwhelming evidence4 that the 129I daughter continues to be threefold or twofold coordinated (π bonded) and experiences a negative4 eV_{zz} [see Fig. 1(b)]. Thus the sign of eV_{zz}, which is directly accessible from 129I Mössbauer emission spectra provides an elegant way to discriminate twofold from threefold coordinated Te sites.

High quality As$_x$Te$_{1-x}$ bulk glasses of compositions $x = 0.30$ and 0.50 were prepared as described in Ref. 7, and characterized by x-ray diffraction, electron microscopy, differential scanning calorimetry, and 129Te Mössbauer absorption spectroscopy. Detailed analysis of these data, to be published elsewhere, indicates that the melt-quenched samples were homogenous glasses. The composition of the glasses was verified independently by crystallizing and identifying the amounts of the two crystalline phases (c-Te, c-As$_x$Te$_y$) formed. In the present experiments, 129mTe doping of the As$_x$Te$_{1-x}$ glasses was carried out by incorporating traces of neutron activated 129Te metal5 in the melts. Figure 2 shows some of the spectra obtained.

The principal result to emerge from these spectra is that there are two types of chemically inequivalent 129I sites. This is seen in Fig. 2 where a qualitative improvement in the fit to the spectra of the As$_{30}$Te$_{70}$ glass results in going from a one-site to a two-site fit. Nuclear-quadrupole-interaction (NQI) parameters (isomer-shift δ, quadrupole coupling e^2Q_{zz}) of the

\begin{figure}[h]
\centering
\includegraphics{fig1}
\caption{Bonding configuration of 129I daughter atoms formed from (a) twofold Te atoms and (b) threefold Te atoms. The filled circle and asterisk designate lone pair and antibonding electron states. Our usage of π and σ bonds here differs from the usual chemical language in that these are defined in the principal axes of the EFG tensor of Te or I. The sign of the eV_{zz} on the right is derived in Ref. 5.}
\end{figure}
two sites, which are henceforth labeled A (high \(e^2QV_{\alpha}\)) and B (low \(e^2QV_{\alpha}\)), were obtained by standard spectral analysis\(^2\) and are summarized in Table I. We believe that these sites are the result of having two distinct \(^{129m}\)Te sites in the glass network and that these are not formed\(^4\) because of bond breaking caused by nuclear recoil in the transmutation \(^{129m}\)Te \(\rightarrow\) \(^{129}\)Te. In contrast to the behavior of the present glasses, \(^{129m}\)Te incorporated in plastic S or amorphous Se leads\(^3\) to a single \(^{129}\)I site (see Fig. 2).

In \(^{129}\)I spectroscopy, a correlation of isomer shift (\(\delta\)) with quadrupole coupling \(e^2QV_{\alpha}\) has been noted previously\(^5\) (see Fig. 3) and this correlation provides a convenient way to identify the chemical nature of the sites A and B. On such a plot, nearly all available data lies in the region bounded by the \(\pi\) and \(\sigma\) line; these lines represent the two extreme cases of I bonding. On this plot we immediately recognize that site A, seen in both As\(_{50}\)Te\(_{70}\) glass and As\(_{50}\)Te\(_{50}\) glass, is closely related to the I site seen\(^10\) in As\(_{51}\) and As\(_{51}\)–S\(_{3}\) crystals. These NQI data unambiguously show that site A represents an I–As \(\sigma\) bond that comes from a parent Te site that was twofold coordinated to As. In Fig. 3, the small systematic shift away from the \(\sigma\) line of the data point of As\(_{51}\) and of site A is the result of increasing amounts of I bonding (\(\pi\) character) to a more distant second As neighbor and is a point which has been discussed earlier.\(^3\)

Thus site A, which is the dominant site in the spectra of the glasses, is also the site which conforms to the \(8 - N\) rule of Te coordination.

The more profound result to emerge from the spectra is the existence of site B in the glasses which is characterized by a positive \(e^2QV_{\alpha}\). We arrive at the sign of \(e^2QV_{\alpha}\) as follows. For As\(_{50}\)Te\(_{70}\) glass, we recognize that when a negative sign is chosen for \(e^2QV_{\alpha}\), the \(\delta\) of the B site is anomalous; i.e., it is low and it lies below the \(\sigma\) line in the plot of Fig. 3. This is unexpected. Interestingly, if a positive sign is chosen for \(e^2QV_{\alpha}\), then the plot reveals that not only does the \(\delta\) of site B appear physically plausible, but in

\[
\text{FIG. 2. Mössbauer spectra of } ^{129m}\text{Te sources in indicated hosts taken at 4.2 K using a Na}^{129}\text{I absorber. Note the qualitative improvement in the fit to the spectra of } ^{\text{g-As}_{50}\text{Te}_{70}} \text{in going from a one-site to a two-site fit. The fits further reveal that the second site (site B) reduces in relative intensity as the As content of the glass increases.}
\]

\[
\text{TABLE I. } ^{129}\text{I quadrupole coupling } (e^2Q V_{\alpha}), \text{ asymmetry parameter } \eta = |(V_{\alpha} - V_{\pi})/V_{\alpha}|, \text{ and isomer-shift } (\delta) \text{ in indicated hosts. The NQI parameters of sites seen in the glasses differ qualitatively from the ones known in the crystals.}
\]

<table>
<thead>
<tr>
<th>Host</th>
<th>Site</th>
<th>(e^2Q V_{\alpha}) (MHz)</th>
<th>(\eta)</th>
<th>(\delta) (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As({50})Te({70})</td>
<td>A</td>
<td>-868(4)</td>
<td>0.22(1)</td>
<td>1.13(1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+363(9)</td>
<td>0.10(^a)</td>
<td>1.13(4)</td>
</tr>
<tr>
<td>As({50})Te({50})</td>
<td>A</td>
<td>-889(3)</td>
<td>0.21(1)</td>
<td>1.13(1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+387(13)</td>
<td>0.10(^a)</td>
<td>1.22(5)</td>
</tr>
<tr>
<td>c-As({5})Te({3})</td>
<td></td>
<td>+186(4)</td>
<td>0.21(9)</td>
<td>1.14(1)</td>
</tr>
<tr>
<td>c-Te</td>
<td></td>
<td>-397(2)</td>
<td>0.70(1)</td>
<td>1.16(1)</td>
</tr>
</tbody>
</table>

\(^a\)Quoted relative to Na\(^{129}\)I.
\(^b\)Parameter kept fixed in fit.
FIG. 3. Correlation of 129I isomer shift ($\delta - \delta_0$) with quadrupole coupling e^2QV_{zz} (see Ref. 9). Site A is related to the I site in As$_4$I$_3$ (see text). For site B, note that the δ for As$_{50}$Te$_{70}$ glass lies below the σ line when a negative sign is chosen for e^2QV_{zz} (open circle). When a positive sign is chosen for e^2QV_{zz} (filled circles) at site B, the nature of this site seen in As$_{50}$Te$_{70}$ glass and As$_{50}$Te$_{70}$ glass becomes the same.

In fact, the nature of site B seen in As$_{50}$Te$_{70}$ glass and the one seen in As$_{50}$Te$_{70}$ glass actually become the same. The effect of increasing the As content of the glass in the composition range $0.30 \leq x \leq 0.50$ then has a fairly simple interpretation; it merely consists of decreasing the site intensity ratio I_B/I_A (see Fig. 2 and Table I) and this is a point we discuss later. The positive sign of e^2QV_{zz} at site B is reminiscent of the positive sign of e^2QV_{zz} observed in the threefold coordinated Te compounds c-As$_2$Te$_3$ (Table I) and Te tetrahalides. By analogy we conclude that site B must also represent a threefold Te site, i.e., the $8-N$ rule of Te coordination must be intrinsically broken in As$_x$Te$_{1-x}$ glasses.

Cornet and Rossier11,12 were the first to propose the existence of threefold Te sites in As$_x$Te$_{1-x}$ glasses on the basis of their diffraction results. In their electron RDF's, the area of the first neighbor peak containing contributions from As-As, As-Te, and Te-Te pairs showed a systematic reduction as a function of x, and this was taken as evidence of a reduced fraction of threefold Te sites. In the Te-rich phase ($x < 0.40$), where presumably some Te-Te bonds occur, these authors suggested11 that the threefold sites are stabilized by a rotation of a given As$_x$Te$_{3/2}$ pyramidal unit about an As$_1$-Te$_2$ bond as shown in Fig. 4. This leads to a more efficiently packed network (of As$_2$Te$_4$ stoichiometry) in which for each threefold Te site, two twofold ones occur, and this is in reasonable agreement with the observed site intensity ratio $I_B/I_A = \text{Te}(\text{threefold})/\text{Te}(\text{twofold}) = 1.28(4)$ for a As$_{50}$Te$_{70}$ glass. In the As-rich phase ($x > 0.40$), these authors further pointed out that some As-As bonds must occur, which, owing to their small length, hinder free rotation of the As$_{3/2}$ units and the formation of threefold Te sites. The reduced value of the site intensity ratio I_B/I_A for (threefold)/Te(twofold) = 1.28(4) found for the As$_{50}$Te$_{70}$ glass is again in general accord with this idea.

The crystal structure13 of As$_2$Te$_3$ is unique in that it has only threefold Te sites and an equal number of both threefold and sixfold As sites. The observation of threefold Te sites in the corresponding As$_{40}$Te$_{60}$ glass, which is 89% as dense as the crystal,11 we believe has an origin in the presence of van der Waals interactions.14 These interactions mediated by lone pairs in these glasses apparently overwhelm the local twofold bonding requirements of Te and lead to a more efficiently packed network with some threefold Te. These results confirm Phillips's conjecture14 that the weak glass-forming tendency of Te (compared to S or Se) is a consequence of its failure to satisfy the coordination constraint of the $8-N$ rule. The As sites in these glasses are threefold coordinated as shown by extended x-ray absorption fine structure.

In conclusion, by use of a novel method, we have demonstrated that both twofold and threefold Te sites occur in As$_x$Te$_{1-x}$ network glasses. This result is shown to be in harmony with the existing diffraction data, density measurements, and understandings of the glass-forming ability of this binary. The present method is likely to provide important clues in understanding the structure, since it is the chalcogen site that appears to display a variety of unique bonding configurations in these technologically important materials.

ACKNOWLEDGMENTS

We acknowledge valuable correspondence with Dr. J. Cornet, Dr. J. C. Phillips, and Dr. J. P. deNeufville.

5. The sign of the EFG in the valence glasses is determined by the population of 5p orbitals of I, since

\[\langle \rho_{p_z} | eV_{zz} | \rho_{p_z} \rangle = -\frac{1}{2} \langle \rho_{p_z} | eV_{zz} | \rho_{p_z} \rangle = 2e/5 \langle r^3 \rangle . \]

For one bond I, such as in a I2 dimer, the EFG is because of \(\sigma \) bonding of a \(\rho_z \) hole. This gives a positive \(eV_{zz} = 4e/5 \langle r^3 \rangle \) and a negative \(e^2QV_{zz} \) since the \(^{125}I \) nuclear moment \(eQ = -0.55 \text{ b} \). For site B, we conjecture that I is twofold coordinated [see Fig. 1(b)] as in BiI3 (see Ref.

10. This requires two electrons to be in a bonding \(\rho_z \) and a nonbonding \(\rho_z \) and another electron in antibonding \(\rho_x \) or \(\rho_y \). This results in a negative \(eV_{zz} = -2e/5 \langle r^3 \rangle \) and a positive \(e^2QV_{zz} \).

