20-EECE-	QUANTUM SYSTEMS		
5122C/6022C			
Required/Elective	Elective for EE and CompE majors; elective for EE and CompE graduate students		
Catalog Data	20-EECE-5122C/6022C. Quantum Systems. Credits 3. Introduction to		
	principles of quantum mechanics and practical applications of the field.		
Prerequisites /	Prereq.: EECE 2076 - Semiconductor Physics / EECE 2077		
Corequisites	Semiconductor Devices / Modern Physics class (intro to quantum mechanics)		
-) or permission of instructor.		
	Corequisites: suggested: 15PHYS6010 Introduction to Quantum		
	Mechanics		
Prerequisites by	Basics of semiconductor physics and devices introduction to modern physics early		
Topic	vears of quantum mechanics		
Textbook	Instructor's notes		
References	1. Gasiorowicz, S. (1996), Quantum Physics, Wiley, New York.		
	2. Fromhold, A. T. (1981) Ouantum Mechanics for Applied Physics and		
	Engineering}, Academic Press, New York.		
	3. Datta, S. (1989) Quantum Phenomena, Volume III, Modular Series, Addison-		
	Wesley, Reading, MA.		
	4. Bohm, A., (1993) Quantum Mechanics: Foundations and Applications, Springer-		
	Verlag, New York.		
	5. Kroemer, H. (1994) Quantum Mechanics for Engineering, Materials Science,		
	and Applied Physics, Prentice-Hall, Englewood Cliffs, New Jersey.		
	6. Datta, S. (1995) Electronic Transport in Mesoscopic Systems, Cambridge		
	University Press, Cambridge.		
	7. Singh, J. (1997) Quantum Mechanics: Fundamentals and Applications to		
	Technology, Wiley, New York.		
	8. Basdevant, J. L. (2000) The Quantum Mechanics Solver:		
	How to Apply Quantum Theory to Modern Physics, Springer, Berlin.		
	9. Townsend, J. S. (2000) A Modern Approach to Quantum Mechanics, University Science Books, CA		
	10 Ferry D K (2001) Quantum Mechanics: An Introduction for Device Physicists		
	and Electrical Engineers Institute of Physics Publishing London		
	11. Rae, A. I. M. (2002) Quantum Mechanics. Taylor and Francis. New York.		
	12. Gottfried, K. and Yan, TM. (2004) Ouantum Mechanics, Springer, New York.		
	13. Basdevant, J. L. and Dalibard, J. (2005) Quantum Mechanics, Springer, New		
	York.		
	14. Levi, A. F. J. (2006) Applied Quantum Mechanics, Cambridge University		
	Press, New York.		
	15. Le Bellac, M. (2006) Quantum Physics, Cambridge University Press, New		
	York.		
	16. Additional references will be provided through the class blackboard site, as		
	needed		
Goals	Students will learn the principles of quantum mechanics with a historical		
	perspective of the field. The student will learn now to solve simple bound states		
	and scattering problems and now to apply them to study the electrical and optical properties of paposcale devices		
Topics	1. General Properties of the Schrödinger Equation		
Topics	2 Operators		
	3 Boundstates		
	4. Heisenberg Principle		

Department of Electrical Engineering and Computing Systems

	5. Current and Energy Flux Densities			
	6. Density of States			
	7. Transfer Matrix			
	8. Scattering Matrix			
	9. Perturbation Theory			
	10. Variational Approach			
	11. Electron in a Magnetic Field			
	12. Electron in an Electromagnetic Field and Optical Properties of Nanostructures			
	13. Time Dependent Schrödinger Equation			
	14. other selected topics			
Additional Work for	Graduate students will be required to do a literature search on a specific current			
Grad Students	research topic in nanotechnology and apply the material taught in this class to			
	analyze a specific paper in details.			
Class/Laboratory	class meets 3 times a week for 55 minutes; each team meets an additional 20			
Schedule	minutes every week with instructor to report on their project			
ABET Outcomes	a, b, e, g1, g2, j			
Course Learning	Students will:			
Objectives	1. Learn how to apply the principles of quantum mechanics to practical problems			
	(a,b)			
	2. Learn how to solve both analytically and numerically practical quantum			
	mechanical problems (a)			
	3. Learn how to use Latex to type their reports including appropriate formatting of			
	equations (a,e)			
	 Students will learn how to use Matlab to solve practical problems in quantum 			
	mechanics (a,e)			
	6. Do a presentation and write a report on their project $(g1,g2)$			
Computer Usage	Students will use sharelatex to write their reports and Matlab to solve practical			
	problems in quantum mechanics	-	-	
Contribution to	Engineering science: 2 credit or 66%; Engineering design: 1 credits or 33%			
Professional				
Component				
Prepared by	Marc Cahay, Ph.D.	Date	August 07, 2016	
Approved by Undergraduate Council		Date		