Decomposable Algorithms for Computing
Minimum Spanning Tree

Ahmed Khedr and Raj Bhatnagar

Univ. of Cincinnati, Cincinnati OH 45221, U.S.A.,
akhedr@ececs.uc.edu, Raj.BhatnagarQuc.edu

Abstract. Inthe emerging networked environments computational tasks
are encountering situations in which the datasets relevant for a computa-
tion exist in a number of geographically distributed databases, connected
by wide-area communication networks. A common constraint in such sit-
uations of distributed data is that the databases cannot be moved to
other network sites due to security, size, privacy or data-ownership con-
siderations. For these situations we need algorithms that can decompose
themselves at run-time to suit the distribution of data. In this paper we
present two such self-decomposing algorithms for computing minimum
spanning tree for a graph whose components are stored across a number
of geographically distributed databases. The algorithms presented here
range from low granularity to high granularity decompositions of the
algorithms.

1 Introduction

Minimum Spanning Tree: The minimum weight spanning tree (M ST prob-
lem is one of the most typical and well-known problems of combinatorial opti-
mization. Minimum spanning tree algorithms for single and parallel processor
architectures have been studied and analyzed extensively [3,5,6, 8]. In the last
two decades efforts have been concentrated on developing faster algorithms based
either on more efficient data structures or multiple processors. Karger et al. in [7]
propose a linear expected-time algorithm. In many M ST algorithms designed
for closely coupled processor systems, a number of processors are assigned to
work on a shared dataset and they work together under the specification of a
parallel algorithm [1,2,9]. Gallager et al [4] present a distributed algorithm that
constructs the minimum weight spanning tree in a connected undirected graph
with distinct edge weights. A processor is assigned to each vertex of the graph,
knowing initially only the weights of edges incident on this vertex. The total
number of messages to be exchanged among the processors for a graph of NV
vertices and E edges is at most 5V logN + 2F where each message contains at
most one edge weight and log 8N bits.

Widely Distributed Knowledge: In environments of geographically dis-
tributed data and knowledge, subgraphs may reside on different sites of a commu-
nication network. Communication time across the sites of a wide-area network is
orders of magnitude larger than that for the processors of a set of closely-coupled

processors. The closely coupled processors’ model is, therefore, not applicable in
this situation. The desired model is one in which the processor at each site
performs large amount of computation with its own subgraph and periodically
exchanges minimal amount of necessary information with processors at other
sites to construct a correct global solution.

Algorithms for processing such distributed graph structures have received
very little attention. The emerging networked knowledge infrastructure requires
algorithms for such distributed data situations. The focus of research described
in this paper is on such situations of widely distributed knowledge.

The situation addressed by us is very different from the one addressed by al-
gorithms using Distributed Shared Memory (DSM). Two major differences from
the DSM environments are: (i) In DSM model the frequent messages from one
processor to the other are for reading and retrieving fine-grained data whereas
in our model results of fairly large local computations are exchanged very in-
frequently among the processors. This is because the communication cost is
overwhelming in the situations being modeled by us. (i) The algorithms us-
ing DSM seek to minimize the number of participating processors whereas in
our algorithms the number of participating databases, and hence the number of
processors, are determined by the global problem to be solved and we seek to
minimize the number of messages that need to be exchanged among them.

An Example Scenario We briefly describe here a real-life situation in which
the decomposable algorithm would be very useful. Consider a number, say n, of
airlines each of which has its own database about flight segments it operates. All
the flight segments operated by an airline may be represented as a graph, and
one such graph exists in the computer system operated by each airline. Some
cities are served by more than one airline and some may be served by only one
of them. Therefore, any two subgraphs may have some shared vertices.

Consider the situation in which these airlines decide to collaborate. Such col-
laborations do not mean a complete merger of their routes and operations but
only sharing each other’s flight segments to complete flight paths for customers.
The costs along each edge of a subgraph may reflect price, seat availability,
travel time etc. Therefore, it is not possible for an airline to share a fixed sub-
graph (along with edge costs) with the other airlines. It is required that the
databases consult each other to determine the least cost paths whenever such
paths are needed. The dynamic nature of costs along the edges of subgraphs
requires frequent computation of least cost paths across the global graph formed
by all the component subgraphs. An algorithm that can dynamically consult all
the individual databases to infer the minimum cost paths is desirable, and our
algorithms seek solutions for these and similar problems.

2 Algorithm Decomposition

The abstraction for the problem addressed by us in this paper can be described
as follows. We assume that each of a number of networked data sites contains
a subgraph. For each site, an implicit global graph exists and it is formed by

combining the local subgraphs at all those data sites with which it can commu-
nicate. We present algorithms for computing minimum spanning tree in these
implicit global graphs, without having to explicitly construct the global graph,
and also with minimum communication among the data sites so as to preserve
communication resources and data security at individual sites.

Our problem involves design of algorithms for computing minimum spanning
tree in a graph that is stored as overlapping component subgraphs across var-
ious sites of a network. We operate under the constraint that data cannot be
transferred between sites. The mathematical formulation of our problem can be
described as follows:

Let us say a result R is obtained by applying a function F' to a dataset D that
iss R=F(D)

In the case of algorithms for distributed databases, D (the global graph)
cannot be made explicit and is known only implicitly in terms of the explicit
components Dy, Do, ..., D,. The implementation of F' in the last equation can
be redesigned by an equivalent formulation: R = G(g1(D1), g2(D2), ..., 9n(Dy))
That is, a local computation g;(D;) is performed at Site; using the database D;.
The results of these local computations are aggregated using the operation G.

Granularity of Function Decomposition It may not be mathematically
possible to decompose every function F' into an equivalent set of G and g; func-
tions. In those cases, we consider a sequential algorithm for evaluating F' which
is a step-sequence composed of simpler functions as in the sequential steps of an
algorithm to evaluate F'. Thus, we represent F' as: F' = f1; fo;...; fn. Then, the
functional decomposition can be found for each f; step and the entire sequence
of f;s is evaluated in a decomposed manner, one f; at a time, to evaluate F.
When the function F' is directly decomposable into a set of G and g; operators,
we refer to it as a higher granularity decomposition. The more primitive the
level of f;s employed to achieve the decomposition, the lower is the granularity
of decomposition. Evaluation of each f; may require exchange of some messages
among the sites. Therefore, it is highly desirable to perform the decomposition
of F' at as high a level of granularity as possible. The algorithms we present in
this paper range from low granularity to higher granularity. It is expected that
the higher granularity decompositions would be performed with lower commu-
nication costs.

Distributed Representation The representation of a graph for the cases
of closely coupled processors and the widely distributed sites can be compared as
follows. In the first case a graph G with its vertices V and edges F is stored either
on a single computer in the form of an adjacency table or in the shared memory
addressable by each of the closely coupled processors. In a widely distributed
environment overlapping components of a graph may be stored on different sites
of a network. Figure 1 below shows an example graph that may be stored on a
single site.

Second part of Figure 1 shows two graphs that may be stored on two different
sites of a network. The two subgraphs together constitute the same graph as in

(a) Complete (b) Two Subgraphs
Graph

Fig. 1. An implicit complete graph is formed by multiple component graphs stored at
different network sites.

Figure 1 and share some of the vertices. This situation can be easily generalized
to n network sites, each containing a part of the complete graph.

One major assumption made by the closely coupled processors paradigm is
that the data can be efficiently moved around among the processors and can
be made available very quickly to a processor site that needs it. This assump-
tion does not hold good in the knowledge environment where potentially huge
databases exist at geographically dispersed sites, connected by wide-area net-
works. From the perspective of elapsed time, it is very expensive to move data
around such networks. The alternative for us is to design algorithms that can
decompose themselves according to the distribution of data across the sites. Par-
tial computations resulting from such decompositions can then be sent to the
sites where data resides and the results obtained then combined to complete the
desired computations. Since a different decomposition of an algorithm may be re-
quired for each type of distribution of data across sites, we would like to develop
algorithms that can decompose themselves into relevant partial computations to
suit the distribution of data. The algorithms should also minimize the commu-
nication cost among the sites. For example, we may want to determine the edges
that should be retained in a minimum cost spanning tree of the complete graph
by the network sites having to exchange minimum number of messages among
themselves. The vertices and edges of the two subgraphs of Figure 2 above can
be represented by the following two tables at their respective sites:

Complexity Cost Models We choose the following three cost models for
analyzing the complexity of our algorithms.

|vertem1 |vertex2 | weight|

1 8 12
4 3 4
4 6 15
1 3 14
3 2)
2 8 7
2 7 16
7 4 8
4 2 10
8 7 13

Table 1. Database at Local Site 1

[vertex; |vertexs| weight|

9 1 3
9 6 6
6) 2
) 4 9
5 10 1
10 6 11

Table 2. Database at Local Site 2

Cost Model #1 Communication Cost only: In this cost model we count
the number of messages, N,,, that must be exchanged among all the participating
sites in order to complete the execution of the algorithm. One message exchange
includes one message sent by a site requesting some computation from another
site and the reply message sent by the responding site. This cost model is relevant
in situations where: (i) We need to analyze the number of messages exchanged
because some critical resource, such as the battery power of sensors, is exhausted
by the sending of messages; and (ii) Communication cost of messages is orders
of magnitude larger than the cost of computations at local sites.

Cost Model #2 Communication 4+ Computation Cost: In this model
we examine a weighted sum of the number of messages exchanged and the num-
ber of local operations performed. If V,,, messages are exchanged among the sites
and a total of N, computational units are performed at all the sites combined
then the algorithm’s cost is given by: a * N, + b* N, where a and b are the
weights representing the relative costs of exchanging a message and performing a
local computational unit. This cost model is useful when the local computation
time within a site is not negligible and must be included within the cost model.

When the databases stored at the sites are huge, as in many scientific and data-
mining applications, the time to execute a local computation may be comparable
to the time taken for exchanging a message across a wide-area network.

Cost Model #3 Elapsed Time Cost: In this model we examine a weighted
sum of the number of messages exchanged and the number of local operations
performed, while accounting for parallel transmission of messages and simultane-
ous execution of local computations at the participating sites. If IV,, messages are
exchanged among the sites and a total of N, computational units are performed
at all the sites combined then the algorithm’s cost is given by: (a*N,,, +b*N.)/p
where a and b are the weights representing the relative costs of exchanging a mes-
sage and performing a local operation, and p is the average number of messages
that can be exchanged in parallel. This cost model is useful when our criterion
is the total elapsed time for executing the algorithm.

3 Low Granularity Decomposition

Here we start by adapting Prim’s algorithm and decomposing each of its steps.
Prim’s algorithm works by building a tree which starts from an arbitrary root
vertex r and grows until the tree spans all the vertices in V (V is the graph
vertex set). At each step, an edge connecting a vertex in V; to a vertexin V-V
is add to the tree. This strategy is greedy since the tree is augmented at each step
with an edge that contributes the minimum amount possible to the tree’s weight.
For a decomposable version of Prim’s algorithm we implement each small step
of the above algorithm in its decomposable form. Therefore, this is the lowest
granularity decomposition. In this version we do not accumulate any work for
a single node to perform and exchange results only after a bigger local result
or summary has been generated and needs to be exchanged with neighboring
subgraphs.

3.1 Algorithm Outline

Input: a connected graph with a vertex set V (|V| = m) and edge set E divided
into n parts, SG1(V1, E1),SG2(Va, Es) ... SGn(Vy, Ey), each part residing at a
different site and any two subgraphs may share some vertices, r The tree root (
a vertex of V'), W weight functions on Ei, Es,...E,, InTheTree[l : m] global
array initialized to F, and Nearst[l : m] global array initialized to oo except
for, Nearst[r] which is set to 0.
Output: Parent[l : m] global array of a minimum spanning tree.
MessageCounter = 0
Parent[r] =0
for step =1tom —1do
select a vertex u that minimizes Nearest[u] over
all u such that InTheTree[u] = F
set InTheTree[u] =T
send message to every site;

select all vertices (vertexs:), weight from SG; where
vertexi=u, and there is an edge
between vertex: and vertexs
MessageCounter = MessageCounter +n
Results = vertexs, weight from SG;
while(R = NextElement(Result))
where R is an object from local sites contains vertexa
and weight, and NextElement is a function take
element by element from the local site results
v = R.vertexs and w = R.weight
if InTheTree[v] = F then
Update Nearest[v] and Parent[v] for all
v € V that are adjacent to u
if (Nearest[v]) > w)
Nearest[v] = w
Parent[v] = u
end if
end if
end while
end for

3.2 Complexity Analysis

According to the cost models we defined in section 2 we derive below an expres-
sion for the number of messages that need to be exchanged for our algorithm
dealing with the implicit set of tuples. Let us say: (i) There are a total number of
m vertices in the whole graph and (ii) There are n relations, D; ... D, residing
at n different network sites.

Cost Model #1: In this cost model we count the number of messages, N,,,
that must be exchanged among all the participating sites in order to complete the
execution of the algorithm. In this case the complexity can be explained as the
following. We maintain a boolean array InTheTree to keep track of the vertices
in/not in the tree. We then select the next edge uv to be added to the tree
by maintaining an array Nearest[l : m] at the algorithm initiating site where
Nearest[v] is the distance from the vertex u to v in the tree and Nearest[v] =
oo if v is not yet in the tree. In the algorithm we have m — 1 stages, and for
each stage the querying site needs to send only one message to every other site.
Therefore, a total of n* (m — 1) messages will have to be exchanged to complete
this algorithm.

Cost Model # 2: In this model we examine a weighted sum of the number
of messages exchanged and the number of local operations performed. For each
exchanged message, this algorithm performs one SQL query at the responding
site. Therefore, the total cost for the algorithm will be a*x (m —1)*n + bx(m —
1)*n = (a+b)n(m —1) where a is the time taken to exchange a message and
b is the average time taken to perform a simple SQL query at a site.

Cost Model # 3: In this model we examine a weighted sum of the number
of messages exchanged and the number of local operations performed, while dis-
counting the effects of messages and operations that can be executed in parallel,
simultaneously at different sites. Therefore, the total cost for the algorithm will
be (ax(m—1)*n 4+ bx(m—1)*xn)/n=(a+b)(m—1) where a is the time
taken to exchange a message and b is the average time taken to perform an SQL
query at a site.

4 Higher Granularity Algorithm for MST

The previous section take an algorithm for a single graph and decompose its
steps to achieve a decomposable version. In this section we present an algo-
rithm designed specially for the distributed environments. This algorithm works
by taking each shared vertex at each local site as a fragment. We grow these
fragments by adding the minimum outgoing edges this is described in Local
Computation section below. Then we combine these fragments by the global
computations described in Global Computation section below.

Fragment Definitions and Properties Before we present the second al-
gorithm we introduce some definitions like fragment and outgoing edge.

Definition 1 A fragment f of an M ST is a subtree of the M ST.

Definition 2 An outgoing edge e of a fragment f is an edge that has one of its
vertices in f and the other vertex out of f.
Property 1 Given a fragment of an M ST, let e be the minimum weight outgoing
edge of the fragment. Then joining e and its adjacent non-fragment vertex to
the fragment yields another fragment of an M ST. This result in the context of
fragments has been shown in [4] and we briefly outline below their proof for this
property.

Suppose the added edge e is not in the M ST containing the original frag-
ment. Then there is a cycle formed by e and some subset of the M ST edges. At
least one edge = # e of this cycle is also an outgoing edge of the fragment, so
that W (z) > W(e) where W(z) is the weight associated with the edge z. Thus,
deleting z from the M ST and adding e forms a new spanning tree which must
be minimal if the original tree was minimal. Therefore, the original fragment
including the outgoing edge e is a fragment of the M ST

We now present a self-decomposing version of an MST building algorithm
for a graph that exists in parts across a network. The assumptions describing
the situation are as follows.

— The complete global connected graph G is represented by n distinct but pos-
sibly overlapping subgraphs. Each subgraph is embedded in a database D;
residing at a different computer system (site) in the network. Each subgraph
consists of vertices and edges such as: SG1(V1, E1), SG2(Va, E2) ... SGp(Vy, Ey)
and G = J; SGi.

— Each subgraph SG; may share some vertices with other subgraphs. The set
of vertices shared by SG; and SG; are: Vo (3,5) = Vi (| V;.

— The set of all vertices that are shared by at least two subgraphs is: Shared
= Ui,j Vjsh(zaj)

— Each edge e of a subgraph SG; has a weight W (e) associated with it.

— The weight of a tree in the graph is defined as the sum of the weights of
the edges in the tree and our objective is to find the global tree of minimal
weight, that is, the global M ST.

4.1 Algorithm Outline

Data Structure: A table called Links is maintained at the coordinator site and
it stores information about candidate edges for linking various fragments to each
other in order to complete the M ST. This table has one row and one column for
each shared vertex in the global graph. Each shared vertex name in the table is
a representative of all the fragments, on all the different sites, that contain this
shared vertex. Each entry in the table represents the site number and the weight
of a potential edge that can link the row-fragment to the column-fragment. How
these values are updated is given in the Global Computations paragraph below.

Local Computations The following steps are executed at each site on its
locally resident subgraph. The goal is to create fragments within each subgraph
at its local site.

— If the site has r shared vertices then each shared vertex is initialized as a
separate fragment. That is, f; = v;,i = 1,2,...,r and v; is the i¢h shared
vertex.

— Expand fragments f;’s as follows

e For each fragment f; find its minimum weight outgoing edge e; such that
e; does not lead to a vertex already included in some other fragment.

e From among all the outgoing edges select the one with least weight. That
is, emin = argmin; We;).

e Add enin to the fragment that selected this edge as its minimum outgo-
ing edge.

Global Computations Each site, after completing its local computations,
sends a message to the coordinator site informing it that the site is ready for
global level coordination. After all the participating sites are ready the coordi-
nator site performs the following steps to generate the global M ST. In the final
state each site knows the edges in its local subgraph that are included in the
global MST. A complete M ST is not generated at any single site.

— At each site, find the minimum-weight outgoing edge from each fragment
to every other locally resident fragment. Each fragment is identified by the
unique shared vertex contained in it. This step generates a tuple <site-
number, from-fragment, to-fragment, weight > for each fragment at the site.
All these tuples are sent to the coordinator site.

— Update the cell Links(row,column) table with the above tuples received from
all the sites as follows.

10

e Include all the received tuples from the local sites in a set S where
row = from-fragment; and
column = to-fragment

e From the set S select the tuple ¢ with the minimum weight value.

e Assign this tuple to Links(row,column).

— Repeat the following steps till the Links table contains only one row and one
column:

e Select in Links the cell with minimum value. This edge links its row-
fragment (fr,) to its column-fragment (f.,;) and is now selected to be
in the global M ST'. This step also means that the fragments f,,,, and
feor are now merged into a new fragment, called fow—coi-

e Update the Links tuple as follows:

* Create a new row and a new column in Links for the fragment
frow—cot and delete the rows and columns for the original two frag-
ments fro, and f.o. The value for the cells in the new row and
column can be determined as:

- For every shared vertex d in the table if the minimum weight of
outgoing edge from d to froy is v1 and to fee is v2 and v1 < vy
then the minimum weight of outgoing edge from d frouy—cor Will
be v;.

End Algorithm.

4.2 Algorithm Correctness

An algorithm that grows and combines fragments until an M ST for the graph
is formed is given by Gallager et al. in [4]. Their algorithm is designed for a
parallel processing environment in which one processor can be assigned to work
at each vertex of the graph. Since our situation is different, we show below that
our algorithm for growing and combining fragments will yield the global M ST.

The set Shared — Vertices contains all those vertices of the subgraphs that
exist in more than one subgraph. We grow fragments starting from each member
of Shared—Vertices that exists at any site. That is, if k shared vertices occur in a
subgraph at a site then the site will locally generate three distinct fragments each
containing one and only one shared vertex. Then we combine these fragments
by the global computations described in section 4.1 above.

We now show that (i) locally generated fragments are parts of the minimum
spanning tree and (ii) the edges selected to combine local fragments are also part
of the global MST.

Assertion: Each locally generated fragment is a part of the global MST.

Proof: The algorithm ensures that each fragment contains one and only one
vertex that is shared with subgraphs at other sites. All the other vertices included
in a fragment are completely local to the subgraph and the site on which the
fragment resides. Therefore, in the global graph there does not exist an edge
that connects a vertex in a local fragment to a vertex in another fragment that
resides at some other site. This implies that edges between vertices of a fragment

11

cannot be replaced by edges existing in some other subgraph residing at some
other site.

Therefore, as long as a fragment is an MST of the local subgraph, it will be
a fragment of the global M ST.

Now we show that a fragment is part of the M ST of its local subgraph i.e.
each added minimum outgoing edge e is part of the M ST.

Suppose the added edge e is not in the M ST containing the original fragment.
Then there is a cycle formed by e and some subset of the M ST edges. At least
one edge = # e of this cycle is also an outgoing edge of the fragment, so that
W(x) > W(e) where W(z) is the weight associated with the edge xz. Thus,
deleting z from the M ST and adding e forms a new spanning tree which must
be minimal if the original tree was minimal. Therefore, the original fragment
including the outgoing edge e is a fragment of the M ST.

Assertion: Edges selected to combine local fragments are part of the global
MST.

Proof: Each fragment contains one and only one shared vertex. Therefore,
joining two fragments by an edge is equivalent to bringing two shared vertices
into one connected component of the M ST. An edge that connects two shared
vertices (and their respective fragments) may exist on more than one site. Our
algorithm examines all possible sites on which the same two shared vertices (and
their fragments) may be connected and selects the minimum-weight edge from
among all the candidate edges on all the sites.

Now, if this does not result in the M ST then there must exist an edge on
a site that links two fragments such that it results in a lower weight M ST.
Suppose e;; which is least weight minimum outgoing edge from fragment f; to
fragment f; chosen from Links table is not the correct minimum outgoing edge
from from fragment f; to fragment f;. Then there is another path from f; to f;
with minimum weight less than the e;; weight. Part of this path is an outgoing
edge y from f; with weight is less than e;; which contradict with the assumption
ej; is the minimum outgoing edge from fragment f;.

4.3 Complexity Analysis

We analyze below the M ST finding algorithm for its complexity from the per-
spective of the three scenarios mentioned in section 2.

Cost Model # 1: In this cost model we count the number of messages, N,,,
that must be exchanged among all the participating sites in order to complete the
execution of the algorithm. In this case the complexity will be: (i) n exchanged
messages to perform local fragments; and (ii) n exchanged messages to combine
the local fragments. Then the total number of exchanged messages will be 2a xn.
where a is the time taken to exchange a message

Cost Model # 2: In this model we examine a weighted sum of the number
of messages exchanged and the number of local operations performed. For each
exchanged message, this algorithm performs one SQL query at the responding
site. Therefore, the total cost for the algorithm will be 2(a + b) xn where a

12

and b are the weights representing the relative costs of exchanging a message
and performing a local operation.

Cost Model # 3: In this model we examine a weighted sum of the number
of messages exchanged and the number of local operations performed, while dis-
counting the effects of messages and operations that can be executed in parallel,
simultaneously at different sites. Therefore, the total cost for the algorithm will
be 2(a +b) *n/n =2(a+b) where a and b are the weights representing the
relative costs of exchanging a message and performing a local operation.

5 Conclusion

We have demonstrated that it is possible to execute graph operations for databases
stored across wide-area networks. These algorithms are decomposable at run
time depending on the set of shared vertices among the graph components stored
at different network sites. We examined the complexity of our algorithms from
the perspective of cost models that take into account the communication cost
across the sites of a wide-area network. It turns out that these graph algorithms
can be computed without too much communication overhead. These algorithms
can perform more efficiently than having to bring all the data at one site while
still preserving the privacy and ownership value of individual databases.

References

1. Abdel-Wahab, H.; Stoica, I.; Sultan, F.; Wilson, K. A Simple Algorithm for
Computing Minimum Spanning Trees in the Internet Information Sciences,
Volume: 101, Issue: 1-2, September, 1997, pp. 47-69.

2. Kenneth A. Berman and Jerome L. Paul Fundamentals of Sequential and
Parallel Algorithms PWS Publishing Company 1997.

3. Mcdiarmid, Colin; Johnson, Theodore; Stone, Harold S. On finding a mini-
mum spanning tree in a network with random weights Random Structures
and Algorithms, Volume: 10, Issue: 1-2, January - March 1997, pp. 187 - 204.

4. Gallager R. G. and et.al A Distributed Algorithm for Minimum- Weight
Spanning Trees ACM Transaction on programming and Systems, 5 66-77.

5. Graham, R.L. and P. Hell. ON the History of the Minimum Spanning Tree
Problem Annals Of the History of Computing,7 1985:43-57.

6. toica, Ion; Sultan, Florin; Keyes A Hyperbolic Model for Communication in
Layered Parallel Processing Environments journal of Parallel and Distributed
Computing, Volume: 39.Issue: 1, November 25,1996, pp.29-45.

7. Karger DR, Klein PN, Targan RE. A randomized linear -time algorithm to
find minimum spanning tree. Journal of the Association for Computing Ma-
chinery ; 42/2:321-8.

8. Nancy A. Lynch Distributed Algorithms Morgan Kaufman Publishers,Inc. San
Francisco, California 1996.

9. King, Valerie; Poon, Chung Keung; Ramachandran,Vijaya; Sinha, Santanu
An optimal EREW PRAM algorithm for minimum spanning tree verification
Information Processing Letters, Volume: 62, Issue: 3, May 14, 1997, pp. 153-
159.

