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Abstract

Experiments on chalcogenide glasses show that local elasticity as measured by Raman scattering and the kinetic
heat-flow near 7, as established from temperature modulated differential scanning calorimetry each display a
threshold behavior associated with network connectivity as defined by the mean coordination, {r), near {r) = (r). =
2.40. Network plasticity of amorphous group IV networks as deduced from nanometer-indentation hardness
measurements varies linearly with {r) once (r) >2.40. Consequences of these results connecting physical behavior
of covalent networks with their connectivity are discussed. © 1997 Elsevier Science B.V.

1. Introduction

One of the success stories in glass science is the
correlation in covalently bonded networks
between a variety of physical properties and net-
work connectivity as defined by the mean coordi-
nation number {r). In Table 1 we summarize
experimental results and numerical simulations
that bear on this correlation [1-19]. These obser-
vations underscore the central role of nearest-
neighbor valence force fields as effective con-
straints {20] in determining the physical behavior
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of covalent network glasses. In this work we shall
discuss some recent results from several tech-
niques, namely, Raman scattering, temperature
modulated differential scanning calorimetry, and
nanometer-indentation hardness measurements
that show the above mentioned correlation in a
rather striking fashion and provide additional in-
sights.

2. Constraint theory, random network
simulations, local elasticity and Raman scattering

2.1. Constraint theory and random network
simulations

A covalently bonded random network progres-
sively stiffens as its connectivity or mean coordi-
nation number, {(r), increases. Networks consist-
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ing of chains (every atom having two nearest
neighbors, r=2), as in elemental S or Se, are
mechanically floppy because the number of near-
est neighbors bonding constraints per atom (= 2)
are less than 3, the degrees of freedom per atom.
The reverse is the case for networks composed of
tetrahedral units (» = 4), such as those of elemen-
tal Si or Ge, which are thus intrinsically rigid. The
mean-field theory [20,21] of constraints due to
bond-stretching and bond-bending forces, on
atomic displacements in random networks, counts
the excess or deficit of constraints per atom, n,
(relative to n, = 3), in terms of (r). The critical
value of {r) is found to be {r).=2.40 (corre-
sponding to n.=3), below which there are
5/2({r). = {r)) floppy modes per atom. Thus at
a critical mean coordination, {r).=2.40, the
number of constraints per atom (7.) equals the
degrees of freedom per atom (n,), and mean-field
theory predicts the onset of rigidity [20,21].

Numerical ‘experiments’ have been performed
[16—19] on models of network glasses constructed
from bond-depleted diamond lattice to examine
the vibrational behavior as a function of network
connectivity {r). In these computer simulations a
Keating potential is used which takes into ac-
count bond stretching and bond bending forces
between nearest-neighbor atoms. In the macros-
copically rigid region ({r) > (r).), these simula-
tions show that elastic constants C display a
power-law behavior with {r), i.e. C ~ ({r) — 2.4)”
with p=1.40. To date there is no theoretical
basis for this number for the exponent.

2.2. Local elasticity and Raman scattering

In binary Ge, X, _, glasses where X =§, Se or
Te, tetrahedral Ge(X, ,), units constitute one of
the principal building blocks of the network back-
bone. Corner-sharing (CS) Ge(X, ,,), units have a
Raman active A| mode which is a symmetric
breathing motion of the four chalcogens (X) about
the central Ge atom. The scale for the underlying
mode frequency, v= /o /m,, is set largely by
the Ge-X bond-stretching force constant, «, and
the reduced mass of the chalcogen, m,. The
bridging angle about the chalcogen atom between

CS tetrahedra deviates from w/2 by typically
about 10°, so that the radial displacements of the
A modes of X bridged tetrahedra are coupled in
energy. This inter-tetrahedral coupling gives rise
to mode frequency changes. The smallness of the
frequency shifts in glasses with composition sug-
gests that each A; mode is weakly coupled to a
few tetrahedra. Furthermore, since CS tetrahedra
represent the majority component of the Ge X, _,
glassy networks when x~ 0.2, the squared fre-
quency v*= a./m, becomes a direct probe of
intermediate-range network elasticity.

We have performed [14] micro-Raman mea-
surements on binary Ge-Se (Ge-S) glasses using
<1 mW of 647.1 nm (514.5 nm) exciting radia-
tion. The A, symmetric stretch modes of corner-
sharing (CS) Ge(X,,), units occur at about 200
cm™! for X=Se, and at 340 cm~! for X=S§
glasses. The composition dependence of the mean
frequency, v(x), of the A, mode for X = Se,
obtained by least-squares fitting the observed
lineshapes, is reproduced in Fig. 1a. We find that
v(x) increases linearly in the 0.10 < x < 0.22 com-
position range, displays a discontinuous change
[14] between x=0.225 and x=0.230, and then
increases superlinearly at larger x. To describe
the super-linear variation, we have fit v using
the following power-law [16-19}:

v2 = 2 =AY — (r)e)’. (1)

In Eq. (1), the mean coordination of the binary
glasses is () = 2(1 +x), since Ge and the chalco-
gen atoms X are, respectively, four- and twofold
coordination, v, is the Raman shift corresponding
to x.=023 or (r).=2.46. The power, p, ob-
tained by plotting log (v — 1?) against log ((r)
—(r).) (see Fig. 2),is p=1.29(3) and p = 1.33(1)
for the S- and Se-glasses, respectively, at 78 K. At
300 K, somewhat lower values p = 1.21(2) and
p = 1.20(3), respectively, are obtained. The num-
bers in parentheses are the magnitude of the
uncertainties in the last digit.

We interpret the discontinuity in Raman mode
frequency shifts near {r).=2.46(1) as evidence
[14] of a stiffness threshold in these glasses. It is
remarkable how close the lower temperature (T
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Fig. 1. (a) Raman A, mode frequency shift » of Ge(Se, ;)
units. (b) Non-reversing heat flow AH,, at T,, in Ge,Se,_,
glasses studied as a function of x showing a threshold behav-
ior near x = 0.23 corresponding to stiffness transition. See [14]
for additional details. The line in {b) is drawn as a guide for
the eye,
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Fig. 2. Log of Raman frequency shift squared »? increase
above y? plotted against log ({r} — {r).) vielding the power
p=131(3) and 1.30(2} in Ge,Se,_, and Ge S,_, glasses of
Eq. (1).

=78 K) of p in Eq. (1) is to the power, p, in
Section 2.1 for the numerically found concentra-
tion dependence of the elastic constants at 7= 0.
Recall that only short-range forces (Keating) are
included in the former calculations. This agree-
ment suggests a picture of local elasticity domi-
nated by short-range forces for the intrinsically
short wavelength coupled A, modes.

3. Structural relaxation of a glass network at 7,
and temperature modulated differential scanning
calorimetry

The recent introduction of temperature-mod-
ulated differential scanning calorimeters [22]
(MDSC) has opened the possibility to deconvo-
lute the reversing (A H,) heat flow at 7, from the
total heat flow (A H,), and thus obtain the non-re-
versing heat flow (AH, = AH,—AH,) compo-
nent. This resolution is generally achieved by
imposing a sinusoidal temperature modulation on
a linear temperature ramp to extract the heat-flow
component (AH,) to the sample that tracks the
sinusoidal 7T-modulation. The non-reversing
heat-flow at 7, provides a measure of energy
dissipated in molecular reorganization of a glass
as it melts when T — 7.

We have measured AH,, as a function of (r)
for both Ge_S,_, and Ge,Se, _, glasses {14]. The
results for selenide glasses appear in Fig. 1b.
AH, (r) displays a near-parabolic dependence on
{r> with a local minimum near {(r) =246, a
composition which coincides [14] with the onset
of network stiffness in the Raman scattering ex-
periments on these glasses. The A H, ({r)) varia-
tion (Fig. 1b) is reminiscent of the activation
energy A E({r)) for tensile stress relaxation varia-
tion with {r) in chalcogenide glasses which also
displays a local minimum near (r) = {r). [15].

Structural arrest of a network upon under-
cooling freezes in stresses which are spatially
localized at fragile segments. Specifically, the
frozen-stress is localized near units such as Seq
monomers and Se,-chain segments, that prolifer-
ate at small x {x < 0.20), or edge-sharing tetrahe-
dra that occur at large x (x> 0.25) in these
glasses. Upon heating, these fragile units relax
with large energy barriers, leading to an increase
in AH,, . Near the composition x =023 or {r) =
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2.46, a combination of corner-sharing tetrahedra-
and chain-fragments form the structural elements
of the ‘strong’ glass. Apparently, at this composi-
tion, frozen stress is most uniform spatially [23],
and structural relaxation of the network proceeds
with a minimum of an energy barrier. These basic
ideas underline the observed threshold behavior
in AH, ((r)) or AE({r)) when (r) approaches
<r>c~

4. Constraint theory, nanometer-indentation
hardness and network connectivity

4.1. Constraints and network plasticity

Hardness is an intrinsically plastic property of a
material. On a macroscopic level, it is physically
related to plastic flow when work-hardening of a
material occurs. On a microscopic level, it is
related to plastic flow, usually to movement of
dislocations in a crystalline material. This pheno-
menon is to be contrasted to elastic deformation
of a solid which is an intrinsically reversible
process.

Within the constraint theory of glasses [23],
interatomic forces provide a measure of local
softness or stiffness of a network. For undercoor-
dinated networks the local softness manifests it-
self in floppy modes which have been observed [9]
in inelastic neutron-scattering and Lamb-
Modssbauer factor [7] measurements. For over-
coordinated networks such as diamond, silicon
and SiC, the local stiffness is connected with
plasticity of the materials. Constraint counting
algorithms reveal that the average number of
constraints /atom increases linearly with average
coordination number. It is reasonable to expect
nanometer-indentation hardness (NIH) to scale
linearly with the number of constraints/atom or
the mean coordination number for each of the
tetrahedral solids. In nanometer-indentation
measurements [23], we can operationally separate
the elastic from the strictly plastic behavior of a
viscoelastic material. Application of a load leads
to a displacement of the indenter in the sample
and upon removal of the load an elastic recovery
of the sample will occur [24,25], thus permitting
the plastic and elastic displacement to be decou-
pled from the total displacement. For this reason

NIH measurements can provide a reliable mea-
sure of network plasticity.

4.2. NIH of hydrogenated amorphous group IV
networks

Another interesting correlation of network con-
nectivity is seen in the systematics of indentation
hardness (NIH) of hydrogenated Si, SiC and C
(diamond). The crystalline structures consist of
ordered networks of tetrahedral building blocks
and possess [24] NIH values of ~ 10 GPa, 30
GPa, and 100, and for which n,=5/2{(r) —=3=7
since r =4, and one can define a hardness index
h =n, =4, respectively. The increasing hardness
measured in the Si— SiC— C (diamond) se-
quence is due to the increasing bond strength of
sp’ covalent bonds as nearest-neighbor distances
decrease. To correlate hardness of corresponding
hydrogenated alloys with A, it is reasonable to
postulate [24] the form

NIH = a4, (2)

where « is the chemical-bond scale factor and
represents the dependence of NIH on the net-
work topology or microstructure within the con-
straint-counting description. Eq. (2) permits us to
separate the chemical effects («) from the mor-
phological (4) ones contributing to NIH. Based
on the measured NIH of the crystalline tetrahe-
dral semiconductors, (i.e. at the value 2 =4) one
establishes directly the chemical bond scale factor
a = 26.25 GPa for diamond, « = 7.5 GPa for SiC
and « = 2.5 GPa for Si. Thin-films of diamond-like
carbon (DLO), silicon carbide (SC) and amor-
phous-silicon («-Si) have been prepared by plasma
decomposition of various hydrocarbons and silane
precursors by several groups. Jiang et al. [25] and
Tamor et al. [26] have prepared DLC-films using
RF plasma decomposition of methane. Weiler et
al. [27] used chemical vapor depositions with
plasma beam sources of acetylene as a precursor
to deposit DLC-films. Their films displayed a
lower hydrogen content and larger NIH values
than those reported by Jiang et al. Graphite-like
sp? and diamond-like sp? bonding configurations
are prevalent in these films with no detectable
evidence of sp-like twofold coordinated struc-
tures.
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Fig. 3. Measured NIH in GPA of DLC-films, SiC-films and
amorphous Sj films compared to predicted hardness (continu-

ous lines) based on mean-field constraint counting procedures.
See Ref. [24] for details.

By establishing the amount of bonded hydro-
gen in these films, and the ratio of sp? to sp’
configuration, one can calculate the hardness in-
dex 4 of the films from the measured hydrogen
content. As has been shown elsewhere [28], it is
meaningful to include the one-fold coordinated
atoms in the constraint counting because they
affect the number of constraints per atom. In Fig.
3, we plot the measured NIH in GPa (H) as a
function of 4. The NIH results on DLC-films
scale linearly with 4 rather well. The correlation
shown in Fig. 3 is suggestive that in these films
hydrogen is bonded to sp*- and sp’-carbon but
not to sp-carbon.

5. Conclusions

The role of network connectivity (as defined by
mean-coordination {r)) on the elastic-, plastic-
and thermally-induced structural relaxation of co-
valently bonded networks is analyzed from results
of recent Raman scattering, indentation hardness
and non-reversing heat-flow measurements at T,
in MDSC measurements. Each of these physical
observables displays a characteristic dependence
on {r); with a resolved change near {r) = {(r),
corresponding to the stiffness transition. The lo-
cal elasticity, increases linearly with {(r) at (r) <
{r)e, is discontinuous near {r) = {r)., and there-
after increases as a power-law, ({r) — {r).)?, with

p = 1.4. The hardness is vanishing at {r) < {(r).,
and it increases nearly linearly with {r) once
{r> > {r).. Finally, the kinetic heat-flow at 7,
which is related to thermally-induced structural
relaxation of the network, displays a local mini-
mum at {r) = {r).. The latter behavior is indica-
tive of a uniform distribution of frozen-in stress
[23] with small energy barriers between various
states of structural relaxation when the network is
optimally coordinated at the rigidity percolation
threshold.
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