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'_’LEE-'] The Uncertainty Relation for Position and Momentyy,
B

We have seen that the wave function of a single particle is spread out ove,
some interval. This means that a measurement of the particle’s position x May

yield any value within this interval. (To simplify our discussion, we Suppog,
Werner Heisenberg | that our particle moves in one dimension and so has a single coordinate x)
(1901-1976, German) Therefore, the particle’s position is uncertain by an amount +Ax, and we refe,
. to Ax as the uncertainty in the position. As mentioned at the end of Section 64,
the standard interpretation of quantum mechanics is that this uncertainty j
not just a reflection of our ignorance of the particle’s position. Rather, the par.
ticle does not have a definite position. The uncertainty exists in nature, not just
in the mind of the physicist. The uncertainty Ax can be smaller in some stateg
than in others; but for any given state, specified by a wave function W (x, ),
there is some nonzero interval within which the particle may be found, and the
particle’s position is simply not defined any more precisely than that.
In Section 6.7 we saw that the wave function that describes a particle can
be built up from sinusoidal waves, but that this requires a spread of different
wave numbers k (or wavelengths A). From the de Broglie relation, -

e 3
P=7

After earning his PhD at Munich, | it fo]lows that a spread of wave numbers implies a spread of momenta; that is,
Heisenberg worked with Born and

then Bohr. His many contributions the particle’s momentum p, like its position x, is uncertain. A measurement of
to modern physics include an early |  the momentum may yield any of several values in a range given by
formulation of quantum mechanics \

in terms of matrices, several ideas Ap =h Ak (6.33)
in nuclear physics, and the famous :
uncertainty principle, for which he We have seen that the spreads Ax and Ak are not independent, but al-

won the 1932 Nobel Prize in| yays satisfy the inequality (6.31),
physics. He remained in Germany I

during World War 1| and‘ worked Ax Ak = 1
on nuclear reactor design. The 2
possibility that he might be work-
ing on an atomic bomb for the
Nazis so frightened the Allies that
a plan was devised to have him as- %
sassinated. An American agent, AxAp =
named Moe Berg, posed as a physi-
cist and met with Heisenberg L . . . . .
when he was visiting neutral| This is one of several inequalities called the Heisenberg uncertainty relations
Switzerland in late 1944. After| and known collectively as the Heisenberg uncertainty principle. It implies that
talking  with Heisenberg, agent| both the position and momentum of a particle have uncertainties in the sensé
Berg decided that the Germans| ¢t degcribed. One can find states for which Ax is small, but (6.34) tells us that

Had mde S [prkhesSatopvaidia Ap will be large; one can also find states for which Ap is small, but Ax will bé

If we multiply this relation by #, we find that

/

STER

bomb and chose not to kill him. . )
large. In all cases their product, Ax A p, will never be less than 7/2.



In classical physics it was taken for granted that particles have definite
o5 of their position x and momentum p. It was recognized, of course, that
vé ud p could not be measured with perfect accuracy. But it was assumed that
x qu enough care, one could make both experimental uncertainties as small as
y Jeased. Heisenberg’s uncertainty relation (6.34) shows that these as-
one ltions were incorrect, There are intrinsic uncertainties, or spreads, Ax
Suzlg_\p in the position and momentum of any particle. Whereas either one of
a“r and Ap can be made as small as one pleases, their product can never be
- than fif2.
we now know that the uncertainty principle applies to all particles. On
acroscopic level, however, it is seldom important, as the following exam-

the M

ple illustrates.

The position x of a 0.01-g pellet has been carefully measured and is known
within £0.5 um. According to the uncertainty principle, what are the mini-
mum uncertainties in its momentum and velocity, consistent with our
knowledge of x?

If x is known within +0.5 um, the spread +£Ax in the position is cer-
tainly no larger than 0.5 um:

Ax = 0.5um

According to the uncertainty relation (6.34), this implies that the momentum
is uncertain by an amount

£ 107475
= =
2Ax 10%m

Ap =108 kg-m/s

Therefore, the velocity v = p/m is uncertain by*

A 1078 kg - m/s )
el 2P _43/‘ = 10%2m/s
m 10 kg

Av =
Clearly, the inevitable uncertainties in p and v required by the uncertainty
principle are of no practical importance in this case. (To appreciate how small
10 m/s is, notice that at this speed our pellet would take about a million
years to cross an atomic diameter.)

e e

Although the uncertainty principle is seldom important on the macro-
S¢opic level, it is frequently very important on the microscopic level, as the
Next example illustrates.

S
L4

: The mass of a stable particle has no uncertainty, so we can treat m as a constant in the
Clation ¢ = p/m.



Example 6.4
\

An electron is known to be somewhere in an interval of total Wi
a ~ 0.1 nm (the size of a small atom). What is the minimum uncertainty j it‘
velocity, consistent with this knowledge? !

If we know the electron is certainly inside an interval of total widy, 3

Ax = (6.35)

e

(Remember that Ax is the spread from the central value out to either siqc_}
According to the uncertainty relation (6.34), this implies that

fi
2 Ax

Ap = = (6.36)

Qs

This implies that Av = Ap/m = #/(am) or

2 . V-
fic 200 eV - nm —Lwloﬁm/s

Av = = =
amc®  (01nm) X (0.5 x 105eV) 250

(where we multiplied numerator and denominator by c? to take advantage
of the useful combinations #ic and mc?). This large uncertainty in v shows
the great importance of the uncertainty principle for systems with atomic

dimensions.
s aTee—

Perhaps the most dramatic consequence of the uncertainty principle is
that a particle confined in a small region cannot be exactly at rest, since if it
were, its momentum would be precisely zero, which would violate (6.36). Since. -
its momentum cannot be precisely zero, the same is true of its kinetic energy,
Therefore, the particle has a minimum kinetic energy, which we can estimate -
as follows: Since the momentum is spread out by an amount given by (6.36) as;

Qe

Ap = (6.37)

the magnitude of p must be, on average, at least of this same order. Thus the
kinetic energy, whether it has a definite value or not, must on average have
magnitude

2 A 2
(K) = <2p—m> o K02 251 ) (6.38)
or, by (6.37)
ﬁZ
K) = 5 (6.39)

The energy (6.39) is called the zero-point energy. It is the minimum
possible kinetic energy for a quantum particle confined inside a region of
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th a. The kinetic energy can, of course, be larger than this, but it cannot be
maller.

at is the minimum kinetic energy of an electron confined in a region of
width a = 0.1 nm, the size of a small atom?

According to (6.39),
) hc)? 200 eV - nm)?
(K) = ﬁ2= (c2) . (f eV -nm) :
2ma (2mc*)a=  (10°eV) X (0.1 nm)
’ =4eV

This lower bound is satisfactorily consistent with the known kinetic energy,
13.6 eV, of an electron in the ground state of a hydrogen atom. *

F

The bound (6.39) gives a useful estimate of the minimum kinetic energy
of several other systems. For more examples, see Problems 6.39,6.42, and 6.43.
We have so far written the uncertainty relation only for the case of a par-

ticle moving in one dimension. In three dimensions there is a corresponding -
inequality for each dimension separately: T
l
fi fi fi 'L""<1>
Ax Ap, 25, AyAp, = > Az Ap, =2 (6.40) N Ax ~ B0
(@
where x, y, z are the particle’s three coordinates and p,, p,, p,, the three com-
ponents of its momentum. (See Problem 6.42 for an application.)
Heisenberg’s Microscope =
g 2 ~~Angle ~ d/I

The uncertainty principle can be illustrated by several thought experiments, /"’ _—
the best known of which is sometimes called the Heisenberg microscope. In ®) g

this thought experiment a classical physicist — reluctant to accept the uncer-
tainty principle — tries to disprove it by showing that he can measure the po- FIGURE 6.16
sition and momentum of a particle with uncertainties smaller than are allowed The Heisenberg microscope.
by the uncertainty relation (6.34). : (a) The minimum experimental
To find the position x of the particle, our classical physicist observes it uncertainty in the particle’s position
with a microscope, as shown in Fig. 6.16. Now, it is a fact — well known in clas- * determined by the
sical physics — that the resolution of any microscope is limited by the diffrac- 'X;Ccr:s;gpé S;elsf/l;t'c()g)a.srhe
tion of light. Specifically, the angular resolution 8y, (the minimum angle at  girection of a photon entering the

Wwhich two points can be told apart) is given by the so-called Rayleigh criterion, microscope is uncertain by an angle
of order d/I; therefore, the photon
gives the particle a momentum (in

0. =~ A (6.41) the x direction) which is uncertain
min *
d by Ap, = p,d/l.
*Recall that we saw in Sec. 5.6 that the kinetic energy is the negative of the total ener-
8Y (E = —13.6¢eV). Also, here we have treated an electron in one dimension. If one

Uses the inequalities (6.40) to include the motion in all three dimensions, one finds
=z 12 eV, in excellent agreement with the observed 13.6 eV.



where A is the wavelength of light used and d the diameter of the Objecy;

lens. If the particle is a distance / below the lens, the minimum uncertainty j, A
is [see Fig. 6.16(a)] 3
A
Ax 5 Wrin ~ (6.4

(where we assume for simplicity that all angles are small, so that sin 0 = ), Oy
classical physicist is aware of this limitation, but points out that he can make Ay
as small as he pleases, for example, by using light of very short wavelength

Simply to pin down the particle’s position with arbitrarily small A x doe;
not itsell conflict with the uncertainty principle. Our classical physicist Mg,
show that he can also know the momentum with a suitably small uncertaingy,
and if we recall that light is quantized, we can quickly show that this is imipog.
sible: In order to observe the particle, he must allow at least one photon lo
strike it, and this collision will change the particle’s momentum. He has no Way
of knowing which part of the lens the photon passed through since the lens |
sends any light from the object through the same image point. Therefore, the
direction in which the photon approached the lens is uncertain by an angle of
order d/I. [See Fig, 6.16(b).] This means that the x component of the photon's
momentum is uncertain by an amount of order p,d/I. Since the particle was
struck by the photon, the x component of the particle’s momentum is now up.
certain by at least this same amount; that is,

(6.43)

>
N,Q_,

d
Apx = py? =

Our classical physicist can make this uncertainty in p, as small as he pleases,
for example by making A large. But comparing (6.42) and (6.43), we see that
whatever he does to reduce A p, will increase Ax and vice versa. In particular,
multiplying (6.42) by (6.43), we find that

AxAp, = h (6.44)

and our classical physicist has failed in his attempt to disprove the uncertainty
principle. *

The uncertainty principle is a general result that follows from the
particle-wave duality of nature. We should emphasize that our analysis of the
Heisenberg microscope is not an alternative proof of this general result; it
serves only to illustrate the inevitable appearance of the uncertainty principle
in the context of one particular experiment.

68 The Uncertainty Relation for Time and Energy

Just as the inequality Ax Ak = % implies the position-momentum uncertainty

relation, Ax Ap = #/2, so the inequality (6.32)

AtAow =1 (6.45)

*The fact that we have found Ax Ap, =k, rather than #/2, is not significant, since the
arguments leading to (6.44) were only order-of-magnitude arguments.



.« a corresponding relation for time and energy. Specifically, if we multi-

'[:;Fll:; 4. we find the time-energy uncertainty relation
p
f
AtAE =7 (6.46)

e AE 1S the uncertainty in the particle’s energy: A quantum particle gener-
erdoes not have a definite energy, and measurement of its energy can yield
ally answer within a range +AF. To understand the significance of At, recall
40 | the inequality (6.45) arose when we considered a wave pulse as a function
Ll;aﬁmc 1 at one fixed position x. The time At characterizes the time spent by
¢ , pulse at that position. Thus, for a quantum wave, At characterizes the time
IE? which the particle is likely to be found at the position x. According to
4.46),if At is small, the particle must have a large uncertainty AE in its energy
alld vice versa: o ‘

If a particle has a definite energy, then AE = 0, and (6.46) tells us that
A¢ must be infinite. That is, a quantum particle with definite energy stays local-
ized in the same region (and in the same state, in fact) for all time. States with
this property are the quantum analog of Bohr’s stationary orbits and are called
stationary states, as we discuss in Chapter 7.

If a particle (or, more generally, any quantum system) does not remain in
the same state forever, At is finite and (6.46) tells us that AE cannot be zero;
that is, the energy must be uncertain. For example, any unstable state of an
atom or nucleus lives for a certain finite time A¢, after which it decays by emit-
ting a particle (an electron, photon, or « particle, for example). This means that
the energy of any unstable atom or nucleus has a minimum uncertainty *

fi

AE =~ ——
2 At

(6.47)

Since the energy of the original unstable state is uncertain, the same is true of
the ejected particle. In some cases one can measure both the spread of
energies of the ejected particles (from many decays of identical unstable
systems) and the lifetime A¢; one can then confirm the relation (6.47). In many
applications one measures one of the quantities AE or At, then uses (6.47) to
estimate the other.

Example 6.6

Many excited states of atoms are unstable and decay by emission of a photon
in a time of order At ~ 1078 s. What is the minimum uncertainty in the energy
of such an atomic state?

According to (6.47), the minimum uncertainty in energy is

AE =~ i = hic P~ 20(1)7eV-nm o ~3 X 108eV
28t 2¢Ar 2 X (3 x 10" nm/s) X (107%s)

—_

*ln (6.47) we have used the symbol =~ because several different definitions of A E and
! are commonly used. For example, At can be defined as the half-life (discussed in
“Ction 1.9) or the mean life (to be discussed in Chapter 17), and the precise form of
© Ielation depends on which definition we adopt. For the case of an unstable particle,
A7) is exact if we take AE to be the so-called half-width at half-height and At to be
€ mean life.



Compared to the several eV between typical atomic energy levels, this y,

tainty AE is very small. Nevertheless, the resulting spread in the energy, .
hence frequency, of the ejected photon is easily measurable with a mu'd'i"d
spectrometer. X

1] |]1

Nowadays, the frequencies of photons ejected in atomic transitiopg g
used as standards for the definition and calibration of frequency and time, ]' 't
cause of the uncertainty principle, the frequency of any such photon is Ul}ce&
tain by an amount §

where At is the lifetime of the emitting state. Therefore, it is importan {0
choose atomic states with very long lifetimes At to use as standards. '
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1.4 Particle vs. Wave; the Uncertainty Relations

In classical mechanics, a particle is a pointlike mass. At each in-
stant of time, such a classical particle has a well-defined position
r(t). The motion of the particle proceeds along a well—deﬁped tra-
jectory, and the motion is completely described by specifying .how
the position r(¢) varies with time. In contrast, a classical wave is an
extensive disturbance in a medium. The medium may consist of a
distribution of particles (for example, air serves as the medium for
sound waves) or it may consist of classical fields (for example, the
electric and magnetic fields surrounding a charge serve as the
medium for electromagnetic waves; the wave may be regarded as a
propagating kink in the field lines surrounding the charge). Sucha
disturbance in a medium is endowed with energy and with mo-
mentum, and the motion of the disturbance transports this energy
and 'this momentum through the medium. However, the wave has

no well-defined position and no well-defined trajectory. Only un-
der exceptional circumstances, when the wavelength is very short
compared with the relevant dimensions of any obstacles or aper-
tures, is it possible to identify an approximate trajectory for the
wave (in geometrical optics, such an approximate trajectory is
called a ray). But even when the wave has an approximate trajec-
tory, the wave can still be distinguished from a particle by its
characteristic interference and diffraction effects—when several
waves come together, they combine constructively or destruc-
tively according to their phase relationships, and when a wave
passes through a small aperture, it deflects and spreads out into the
shadow zone.

Nineteenth-century physicists observed interference and dif-
fraction effects in light, and they found that electrons appeared to
follow definite trajectories in cathode-ray tubes. They therefore
concluded that light is a wave and that electrons are particles. The
discovery of particle properties of light and the discovery of inter-
ference and diffraction effects of electrons demolished this tidy
distinction between particles and waves. Light sometimes be-
haves like a classical particle, and sometimes like a classical
wave. Electrons—as well as protons, neutrons, and other “parti-
cles”—sometimes behave like classical particles, and sometimes
like classical waves. Whether electrons exhibit particle or wave
properties depends on circumstances—it depends on what mea-
surement we perform. For instance, in Thomson’s electron-dif-
fraction experiment, the electrons behave like waves while pass-
ing through the crystallites in the metallic film; but they behave
like particles when they strike the fluorescent screen. The pattern
of rings shown in Fig. 1.2 is made up of the impacts of many
electrons on the fluorescent screen; each individual electron im-
pact yields a pointlike flash of light, as expected for the impact of a
particle. Electrons are said to exhibit duality: they have the prop-
erties of both classical particles and classical waves. However, as
Heisenberg has emphasized, electrons are entities of one kind,
and the apparent duality arises from the limitations of our lan-
guage and our intuition. Our language was invented to describe
the processes we observe in our everyday life, and all such pro-
cesses involve macroscopic bodies with a large number of atoms.
The processes that occur at the atomic level are outside the realm
of our direct experience. We lack the words to describe these
processes, and we lack the intuition to visualize them. If we at-
tempt to describe the behavior of electrons in terms of the familiar
concepts of classical particles and classical waves, we find that
neither is adequate by itself, and only some particle-wave hybrid
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will give a crude approximation to the behavior of electrons. In
view of this, Eddington proposed that electrons be called
wavicles; but this quite apt neologism has not gained wide accep-
tance. In modern physics, electrons (or protons, or neutrons, etc.)
are often called quantum-mechanical particles.

Heisenberg recognized that, since a quantum-mechanical par-
ticle has wave properties, it cannot have sharply defined position
and velocity, or position and momentum. The wave packet de-
scribing the state of the quantum-mechanical particle has some
width, that is, it spans a spread of positions. Furthermore, since a
wave packet is a superposition of a number of harmonic waves, it
contains a spread of wavelengths, or a spread of momenta.
Heisenberg demonstrated that the spread of positions and the
spread of momenta are subject to the inequality

Ax Ap, = 3% (16)

The spreads of position and momentum within the wave packet
represent uncertainties in the possible outcomes of simultaneous
measurements of position or momentum. Thus, Eq. (16) is called
Heisenberg’s uncertainty relation. Similar uncertainty relations
are, of course, valid for the y and z components of the position and
the momentum. Note that according to Eq. (16), if the position is
defined very accurately (small Ax), then the momentum is poorly
defined (large Ap.), and conversely.

Heisenberg illustrated the uncertainty relation with several
Gedankenexperimente. The simplest of these involves the mea-
surement of the position of an electron by means of a slit. Suppose
that a beam of electrons approaches a horizontal slit of vertical
width a (see Fig. 1.3). If an electron passes through this slit, then

B
1

Fig. 1.3 Determination of the vertical position of an electron by means ofa
horizontal slit.
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its vertical position is known to within an uncertainty Ay = a.
However, because of its wave properties, the electron will suffer
diffraction at the slit, that is, the electron wave will spread up and
down over a range of angles. As a rough measure of the uncer-
tainty of the direction of motion we can take the angular width 6 of
the central maximum of the diffraction pattern; this angular width
is given by an equation familiar from wave optics:

asin g =X\ a7

The vertical component of the momentum is then uncertain by
.. _h . . h
Apy=psm0—hsm0—a (18)

and the product of the simultaneous uncertainties Ay and Ap, for
the measurement of position and momentum in this experimental
arrangement is
h
AyApy=aZ=h (19)
This is consistent with the uncertainty relation (16). Note that Eq.
(18) shows quite explicitly how the uncertainty in momentum is
affected by the choice of a. If we make @ small, and thereby
achieve a precise measurement of position, then Ap, will become
large.

Another Gedankenexperiment by Heisenberg seeks to mea-
sure the position of an electron by means of a hypothetical micro-
scope operating with light of extremely short wavelength, or
gamma rays. Figure 1.4 shows such a gamma-ray microscope
aimed at an electron. The gamma rays are scattered by the elec-
tron into the objective lens of the microscope (in practice, no
lenses for gamma rays are available, but we will ignore this petty
technicality). According to wave optics, the resolving power of the
microscope is

A

Ax = —
sin a

(20)

where « is the angle subtended by the objective lens (see Fig.
1.4). However, the measurement of position is impossible unless
at least one photon strikes the electron. When this happens, the
electron acquires a recoil momentum and an uncertainty in the
momentum, by the Compton effect. The magnitude of the mo-
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Fig. 14 Heisenberg's gamma-ray microscope.

mentum of the scattered photon is h/A;2 since the direction of
motion of the scattered photon can fall anywhere within the angle
a, the horizontal component of the momentum of this photon is
uncertain by Ap, = (h/\) sin a, and this must be the uncertainty in
the momentum of the electron. The product of the simultaneous
uncertainties Ax and Ap, is then '

Ax Ap, = ( )(% sin a) =h (21)

sin «
which is, again, consistent with the general uncertainty relation
(16).

The uncertainty relation tells us that the position and the mo-
mentum of a quantum-mechanical particle are complementary
variables; if we perform a measurement that determines one of
these with high accuracy, then the other will be poorly deter-
mined. Since the momentum is directly related to the wave-
length, we can also say that the particle aspect (position) and the
wave aspect (wavelength) are complementary. Thus, in any given
measurement, either the particle aspect will be displayed or the
wave aspect, but not both together. This principle of complemen-
tarity was formulated by Bohr.

The following Gedankenexperiment neatly illustrates the
complementarity of the particle and wave aspects. Consider an
opaque plate with two thin, parallel slits and a fluorescent screen
placed beyond the plate (see Fig. 1.5). Ifa beam of monoenergetic
electrons is incident on the plate, the electron waves passing
through the two slits will form a typical interference pattern on the

2 Here, and also in Eq. (20), A is the wavelength of the photon after it is
scattered by the electron.
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Fig. 1.5 An electron interference experiment involving two slits.

screen. The angular locations of the maxima of this interference
pattern are given by a formula familiar from wave optics:

dsin 6 = nA n=20,1,2,... (22)

where d is the distance between the slits. Thus, the experimental
arrangement of Fig. 1.5 brings out the wave aspect of the elec-
trons. But suppose we now ask the question: Through which of
the two slits does each individual electron pass? The experimen-
tal arrangement of Fig. 1.5 does not give us any information on this
point, and if we want to investigate the passage of the electrons
through the slits, we need some extra experimental equipment, for
instance, we might aim a Heisenberg gamma-ray microscope at the
slits and watch electrons passing through. Since we want to de-
cide through which of the slits an electron passes, the gamma-ray
microscope must measure the position of the electron with an un-
certainty no larger than d, that is, Ay = d. But this implies Ap, =
h/d, and consequently the direction of motion of the electron ac-
quires an uncertainty.

A(sin ) =A#p=——=— (23)

Compearing this with Eq. (22), we see that the uncertainty in the
angle is as large as the angular separation between one maximum
of the interference pattern and the next. Thus, the interference
pattern will be completely washed out—the electrons will strike
the fluorescent screen more or less at random. This Gedankenex-
periment illustrates that we can either let the electrons display
their wave properties (if we do not check through which slit the
electrons pass) or we can let the electrons display particle proper-

ties (if we check through which slit the electrons pass). But if we
investigate the particle properties, then the wave properties will
remain hidden. Note that what equipment we use to check on the
passage of electrons through the slits is irrelevant—any kind of ~
equipment will yield the uncertainty relation Ap, = h/d, and
therefore lead to the conclusion (23).



