Ex 5.1

A 0.18- μ m fabrication process is specified to have $t_{ox}=4$ nm, $\mu_n=450$ cm²/V·s, and $V_t=0.5$ V. Find the value of the process transconductance parameter k'_n . For a MOSFET with minimum length fabricated in this process, find the required value of W so that the device exhibits a channel resistance r_{DS} of 1 k Ω at $v_{GS}=1$ V. Ans. 388 μ A/V²; 0.93 μ m

Ex: 5.1

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{4 \text{ nm}} = 8.625 \text{ fF/(}\mu\text{m})^2$$

$$\mu_n = 450 \text{ cm}^2 / \text{VS}$$

$$k'_{n} = \mu_{n} C_{ox} = 388 \ \mu \text{A} / \text{V}^{2}$$

$$V_{OV} = (v_{GS} - V_t) = 0.5 \text{ V}.$$

$$g_{DS} = \frac{1}{1 \text{ k}\Omega} = k'_n \frac{W}{L} V_{OV} \Rightarrow \frac{W}{L} = 5.15$$

$$L = 0.18 \ \mu \text{m}, \text{ so } W = 0.93 \ \mu \text{m}$$

A circuit designer intending to operate a MOSFET in saturation is considering the effect of changing the device dimensions and operating voltages on the drain current I_D . Specifically, by what factor does I_D change in each of the following cases?

- (a) The channel length is doubled.
- (b) The channel width is doubled.
- (c) The overdrive voltage is doubled.
- (d) The drain-to-source voltage is doubled.

Ex: 5.3
$$I_D = \frac{1}{2}k'_n \frac{W}{L}V_{OV}^2$$
 in saturation

Change in I_D is:

- (a) double L, 0.5
- (b) double W, 2
- (c) double V_{ov} , $2^2 = 4$
- (d) double V_{DS} , no change (ignoring length modulation)

FX 5.4

An NMOS transistor is operating at the edge of saturation with an overdrive voltage V_{OV} and a drain current I_D . If V_{OV} is doubled, and we must maintain operation at the edge of saturation, what should V_{DS} be changed to? What value of drain current results?

Ans. 2 V_{OV} ; 4 I_D

Ex: 5.4 In saturation $v_{DS} \ge V_{OV}$, so $2V_{OV}$

$$I_D = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2$$
, so 4 I_D .

Ex D5-4

) For the circuit in Fig. E5.9, find the value of R that results in $V_D = 0.8 \text{ V}$. The MOSFET has $V_{tn} = 0.5 \text{ V}, \ \mu_n C_{ox} = 0.4 \text{ mA/V}^2, \ W/L = \frac{0.72 \text{ } \mu\text{m}}{0.18 \text{ } \mu\text{m}}, \text{ and } \lambda = 0.$

Ans. $13.9 \text{ k}\Omega$

Figure E5.9

Ex: 5.9

$$\frac{W}{L} = \frac{0.72 \ \mu \text{m}}{0.18 \ \mu \text{m}} = 4.0$$

$$\lambda = 0$$

$$V_{tn} = 0.5 \text{ V}.$$

$$\mu_n C_{ox} = 0.4 \text{ mA}/V^2$$

saturation mode $(v_{GD} = 0 < V_{tn})$

$$V_D = 0.8 \text{ V.} = 1.8 - I_D R_D$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_D - V_{tn})^2 = 72 \ \mu A$$

$$\therefore R = \frac{1.8 - 0.8}{72 \,\mu\text{A}} = 13.9 \,\text{k}\Omega$$

Consider the amplifier circuit of Fig. 5.39(a) without the load resistance R_L and with channel length modulation neglected. Let $V_{DD} = 5 \text{ V}$, $V_t = 0.7 \text{ V}$, and $k_n = 1 \text{ mA/V}^2$. Find V_{OV} , I_D , R_D , mum allowable input signal, \hat{v}_t ?

Ans. 0.319 V; 50.7 μ A; 78.5 $k\Omega$; 13 $M\Omega$; 27 mV

$$V_{I} = 0.7 \text{ V}.$$

$$k_{n} = 1 \text{ mA} / V^{2}$$

Design for
$$A_v = \frac{v_O}{v_i} = -25$$
, $R_{\rm in} = 500 \text{ k}\Omega$

$$\therefore g_m R_D = 25 = k_n V_{OV} R_D$$

$$R_{\rm in} = \frac{v_i}{ii} = \frac{v_i}{v_i - v_o} R_G$$

$$\Rightarrow R_G = 26 R_{\rm in} = 13 \text{ M}\Omega$$

$$I_D R_D = \left(\frac{1}{2} k_n V_{OV}^2\right) R_D$$

$$= \frac{1}{2} g_m R_D V_{OV} = 12.5 V_{OV}$$
and
$$V_{OV} = V_{DD} - V_i - I_D R_D = 4.3 - 12.5 V_{OV}$$

$$\therefore V_{OV} = 0.319 \text{ V}.$$

$$g_m = 319 \text{ } \mu\text{A} / V$$

$$R_D = 78.5 \text{ } k\Omega$$

$$V_{DS} = V_{OV} + V_i$$

$$\hat{v}_{GD} = 0 + 26 \hat{v}_i \leq V_i$$

$$\therefore |\hat{v}_i| < \frac{V_i}{26} = 27 \text{ mV}.$$

Consider the circuit of Fig. 5.56 for the case $V_{DD} = V_{SS} = 10 \text{ V}$, I = 0.5 mA, $R_G = 4.7 \text{ M}\Omega$, $R_D = 15 \text{ k}\Omega$, $V_t = 1.5 \text{ V}$, and $k_n'(W/L) = 1 \text{ mA/V}^2$. Find V_{OV} , V_{GS} , V_G , V_S , and V_D . Also, calculate the values of g_m and r_o , assuming that $V_A = 75 \text{ V}$. What is the maximum possible signal swing at the drain for which the MOSFET remains in saturation?

Ans. See Fig. E5.37; without taking into account the signal swing at the gate, the drain can swing to -1.5 V, a negative signal swing of 4 V

$$V_t = 1,5 \text{ V}$$

$$k_n \frac{W}{L} = 1 \text{ mA} / V^2$$

$$V_A = 75 V$$
.

$$I_D = 0.5 \,\mathrm{mA} = \frac{1}{2} k_n \frac{W}{L} V_{OV}^2 \Rightarrow V_{OV} = 1.0 \,\mathrm{V}.$$

$$V_{GS} = V_t + V_{OV} = 2.5 \text{ V}$$

$$V_G = 0$$

$$V_S = -2.5 \text{ V}.$$

$$V_D = V_{DD} - I_D R_D = +2.5 \text{ V}.$$

$$g_m = k_n \frac{W}{L} V_{OV} = 1 \text{ mA/V}$$

$$r_O = \frac{V_A}{I_D} = 150 \text{ k}\Omega$$

$$V_{GD} - \hat{v}_{gd} = V_t$$

$$-\hat{v}_{gd} \cong \hat{v}_d = V_t - V_{GD} = 4.0 \text{ V}.$$

Ex. 5.43

For a depletion-type NMOS transistor with $V_t = -2 \text{ V}$ and $k'_n(W/L) = 2 \text{ mA/V}^2$, find the minimum v_{DS} required to operate in the saturation region when $v_{GS} = +1 \text{ V}$. What is the corresponding value of i_D ?

Ans. 3 V; 9 mA

Ex: 5.43

$$V_{GS} = +1 \text{ V}, \text{ V}_{+} = -2 \text{ V}$$

 $V_{GS} - V_{+} = 3 \text{ V}$
TO OPERATE IN SATURATION REGION:
 $V_{DS \text{ min}} = V_{GS} - V_{+} = 3 \text{ V}$
 $\dot{t}_{D} = \frac{1}{2} k_{n} \frac{W}{L} (V_{GS} - V_{+})^{2}$

 $=\frac{1}{2}\times2\times3^2 = 9 \text{ mA}$

 $\mathbb{S}.\mathbb{S}$ An NMOS transistor with $k_n = 1\,\mathrm{mA/V^2}$ and $V_t = 1\,\mathrm{V}$ is operated with $V_{GS} = 2.5\,\mathrm{V}$. At what value of V_{DS} does the transistor enter the saturation region? What value of I_D is obtained in saturation?

5.9
$$V_{DS}$$
 $sat = V_{OV}$
 $V_{OV} = V_{GS} - V_t = 2.5 - 1 = 1.5 \text{ V}$
 $\Rightarrow V_{DS}$ $sat = 1.5 \text{ V}$

In saturation:

$$i_D = \frac{1}{2} K'_u \left(\frac{w}{L}\right) V_{OV}^2 = \frac{1}{2} K u V_{OV}^2$$

$$i_D = \frac{1}{2} \times \frac{1 \text{ mA}}{V^2} \times (1.5 \text{ V})^2$$

$$i_D = (1.125 \text{ mA})$$

5.14 Consider an *n*-channel MOSFET with $t_{ox} = 9$ nm, $\mu_n = 500 \text{ cm}^2/\text{V} \cdot \text{s}$, $V_t = 0.7 \text{ V}$, and W/L = 10. Find the drain current in the following cases:

(a)
$$v_{GS} = 5 \text{ V}$$
 and $v_{DS} = 1 \text{ V}$

(b)
$$v_{GS} = 2 \text{ V}$$
 and $v_{DS} = 1.3 \text{ V}$

(c)
$$v_{GS} = 5 \text{ V}$$
 and $v_{DS} = 0.2 \text{ V}$

(d)
$$v_{GS} = v_{DS} = 5 \text{ V}$$

5.14
$$t_{ox} = 9 \text{ nm}, \ \mu_n = 500 \text{ cm}^2/\text{V},$$

 $V_t = 0.7 \text{ V}, \ \frac{W}{I} = 10$

$$k_{n'} = \mu_n.C_{ox} = \mu_n.\frac{\epsilon_{ox}}{t_{ox}}$$

$$500 \times 10^{-4} \times \frac{3.45 \times 10^{-11}}{9 \times 10^{-9}} = 191.7 \frac{\mu A}{V^2}$$

(a) triode region: $V_{DS} < V_{GS} - V_t$

$$i_D = k_u \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} . V_{DS}^2 \right]$$

= 191.7 × 10⁻⁶ × 10
 $\left[(5 - 0.7) \times 1 - \frac{1}{2} \times 1^2 \right] = 7.3 \text{ mA}$

(b) saturation region: $V_{\rm DS} > V_{\rm GS} - V_{\rm t}$

$$i_D = \frac{1}{2} \times 191.7 \times 10^{-6} \times 10 \times (2 - 0.7)^2$$

 $= 1.62 \, \text{mA}$

(c) triode region: $V_{DS} < V_{GS} - V_t$

$$i_D = 191.7 \times 10^{-6} \times 10 [(5 - 0.7) \times 0.2 - \frac{1}{2} (0.2)^2]$$

= 1.61 mA

(d) saturation region: $V_{\rm DS} > V_{\rm GS} - V_{\rm t}$

$$i_D = \frac{1}{2} \times 191.7 \times 10^{-6} \times 10 \times (5 - 0.7)^2$$

= 17.7 mA

Frollem

5.17 An NMOS transistor having $V_t = 1$ V is operated in the triode region with v_{DS} small. With $V_{GS} = 1.5$ V, it is found to have a resistance r_{DS} of 1 k Ω . What value of V_{GS} is required to obtain $r_{DS} = 200 \Omega$? Find the corresponding resistance values obtained with a device having twice the value of W.

5.17 Eq.4.13:
$$r_{DS} = [k'_n \frac{W}{L} (V_{GS} - V_i)]^{-1}$$

therefore:

$$\frac{r_{DS1}}{r_{DS2}} = \frac{V_{GS2} - V_t}{V_{GS1} - V_t} \Rightarrow \frac{1000}{200} = \frac{V_{GS2} - 1}{1.5 - 1}$$
$$\Rightarrow V_{GS2} = 3.5 \text{ V}$$

Now for a device with twice the width:

$$\frac{r_{DS1}}{r_{DS2}} = \frac{W_2(V_{GS2} - V_t)}{W_1(V_{GS2} - V_t)}$$

for $V_{GS} = 1.5 \text{ V}$

$$\frac{r_{DS1}}{r_{DS2}} = 2 \Rightarrow r_{DS2} = \frac{1000}{2} = 500 \Omega$$

for
$$V_{GS} = 3.5 \text{ V } r_{DS2} = \frac{200}{2} = 100 \Omega$$

5.18 A particular enhancement MOSFET for which $V_t = 0.5 \, \text{V}$ and $k_n'(W/L) = 0.1 \, \text{mA/V}^2$ is to be operated in the saturation region. If i_D is to be 12.5 μ A, find the required v_{GS} and the minimum required v_{DS} . Repeat for $i_D = 50 \, \mu$ A.

5.18
$$V_{tm} = 0.5 \text{ V}$$
 $k_n' \frac{W}{L} = 0.1 \text{ mA/V}^2$

Saturation mode

 $v_{DS} \ge (v_{GS} - V_{tm})$

for $i_D = 12.5 \mu\text{A}$
 $v_{GS} = 1.0 \text{ V}$ and $v_{DS} \ge 0.5 \text{ V}$

for $i_D = 50 \mu\text{A}$
 $v_{GS} = 1.5 \text{ V}$, and $v_{DS} \ge 1.0 \text{ V}$

Rollen

5.22 For an NMOS transistor, for which $V_t = 0.5$ V, operating with v_{GS} in the range of 0.8 V to 1.8 V, what is the largest value of v_{DS} for which the channel remains continuous?

 $5.22 V_{i} = 0.5 V.$

 $0.8 \le v_{GS} \le 1.8 \text{V}.$

largest v_{DS} for ohmic operation?

 $v_{DS} \le v_{OV} = v_{GS} - V_t = 0.3 \sim 1.3 \text{ V}.$

 $v_{DS} \le 0.3 \text{ V}$ will ensure ohmic mode

5.47 The transistor in the circuit of Fig. P5.47 has $k_n' = 0.4 \,\mathrm{mA/V^2}$, $V_t = 0.5 \,\mathrm{V}$, and $\lambda = 0$. Show that operation at the edge of saturation is obtained when the following condition is satisfied:

$$\left(\frac{W}{L}\right)R_D = 1.5 \text{ k}\Omega$$

Figure P5.47

$$k_n = 0.4 \text{mA} / \text{V}^2$$

$$V_t = 0.5 \text{ V},$$

$$\lambda = 0$$
sat. boundary $V_{GD} = 0.5 \text{V}, = I_D R_D$

$$0.5 \text{V}, = \frac{1}{2} k_n \frac{W}{L} (1.8 - 0.5)^2 R_D$$

$$\therefore \frac{W}{L} R_D = 1.48 \text{ k}\Omega$$

Problem D 5.50

Both NMOS

$$V_t = 0.5V$$

 $V_t = 0.5V$
 $V_t = 0.5V$
 $V_t = 0.5V$

L1=L=0.25 Um what is value of gate width of Proth NMOS

and value of R obtain values of voltages and current indicated?

$$L_1 = L_2 = 0.25 \ \mu \text{m}$$

$$R = \frac{2.5 - 1.8}{0.25 \,\mathrm{mA}} = 2.8 \,\mathrm{k}\Omega$$

for Q_1

$$0.25 \,\mathrm{mA} = \frac{1}{2} \left(250 \,\mu\mathrm{A} / \mathrm{V}^2 \right) \frac{W_1}{L_1} (1 - 0.5)^2$$

$$\therefore W_1 = 8L_1 = 2 \, \mu \text{m}$$

for Q_2

$$0.25 \,\mathrm{mA} \,=\, \frac{1}{2} (250 \,\,\mu\,\mathrm{A}\,/\,\mathrm{V}^2)$$

$$\frac{W_2}{L_2}(1.8 - 1.0 - 0.5)^2$$

$$W_2 = 22.2L_2 = 5.6 \ \mu \text{m}$$

Pullem

5.57 For each of the circuits shown in Fig. P5.57, find the labeled node voltages. The NMOS transistors have $V_t = 1 \text{ V}$ and $k'_n W/L = 5 \text{ mA/V}^2$.

Figure P5.57

5.57 (a)
$$V_t = 1V$$
. $k_n \frac{W}{L} = 5 \frac{\text{m}A}{V^2} \lambda = 0$

 Q_1 is in saturation

 Q_2 assume sat.

$$V_2 = -V_{GS2} = -2.5 + I_D 1 \text{k}$$

$$-V_{GS2} = -2.5 + (1) \left(\frac{1}{2}\right) (5) \left[V_{GS2} - 1\right]^2$$

$$0 = 2.5 V_{GS2}^2 - 4V_{GS2} + 0$$

$$V_{GS2} = +1.6 \text{ V. } (0, \text{ bad root } < V_t)$$

$$I_D = 0.90 \text{ mA}$$

$$V_{GS1} = +1.6 \text{ V}$$

$$V_1 = +2.5 - V_{GS1} = +0.9 \text{ V}$$

$$V_{GD2} = -0.9 < V_t : Q2 \text{ sat.}$$

$$V_2 = -1.6 V.$$

Both Q_1 and Q_2 in sat.

$$(V_{GD1} = V_{GD2} = 0)$$

: both Q_1 and Q_2 have same V_{GS}

$$+5 - 1KI_D - V_{GS} - V_{GS} - 1KI_D = 0$$

$$5 - (2)\left(\frac{1}{2}\right)(5)[V_{GS} - 1]^2 - 2V_{GS} = 0$$

$$0 = -5V_{GS}^2 + 8V_{GS}$$

$$V_{GS} = +1.60 \,\mathrm{V}$$
, (bad root $< V_t$)

$$I_D = 0.90 \text{mA} = \frac{1}{2} \left(5 \frac{\text{mA}}{\text{V}^2} \right) [1.6 - 1]^2$$

$$V_1 = +5 - (1k)I_D = +4.1$$
V.

$$V_2 = V_1 - V_{GS} = +2.5 V.$$

$$V_3 = V_2 - V_{GS} = (1k)I_D = 0.9 \text{ V}$$

Follem

5.76 For the NMOS amplifier in Fig. P5.76, replace the transistor with its T equivalent circuit, assuming $\lambda = 0$. Derive expressions for the voltage gains v_s/v_i and v_d/v_i .

Figure P5.76

$$v_{i} = (g_{m}v_{gs}) \left(\frac{1}{g_{m}} + R_{s}\right)$$

$$v_{d} = -g_{m}v_{gs}R_{D}$$

$$v_{g} = + g_{m}v_{gs}R_{S}$$

$$v_{g} = \frac{R_{s}}{v_{i}} = \frac{R_{s}}{\frac{1}{g_{m}}} + R_{s}$$

$$v_{d} = -R_{D}}{v_{g}R_{S}}$$

$$v_{d} = -\frac{R_{D}}{v_{g}R_{S}} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

Bollem

Figure P5.79 shows a discrete-circuit amplifier. The input signal $v_{\rm sig}$ is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite).

(a) If the transistor has $V_t = 1$ V, and $k_n = 2$ mA/V², verify that the bias circuit establishes $V_{GS} = 2$ V, $I_D = 1$ mA, and $V_D = +7.5$ V. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.

(b) Find g_m and r_o if $V_A = 100$ V.

(c) Draw a complete small-signal equivalent circuit for the amplifier, assuming all capacitors behave as short circuits at signal frequencies.

(d) Find $R_{\rm in},\, v_{gs}/v_{\rm sig}$, $v_o/v_{gs},$ and $v_o/v_{\rm sig}.$

5.79
$$V_t = 1V$$
, $k_n = \frac{W}{L} = 2 \text{ mA}/V^2$
(a) dc analysis $V_G = \frac{5}{15} 15 V$, = 5V, assume $I_D = 1 \text{ mA}$
 $V_S = 3 \text{ V}$, $V_{GS} = 2 \text{ V}$, $V_{0V} = 1 \text{ V}$.
 $I_D = \frac{1}{2} k' V_{0V}^2 = 1 \text{ mA}$ (check)

$$V_D = V_{DD} - I_{\bar{D}} R_{\bar{D}} = 7.5 \text{V}.$$

(b)
$$r_0 = \frac{V_A}{I_D} = \frac{100 \text{ V}}{1 \text{ mA}} = 100 \text{ k}\Omega$$

$$g_m = \sqrt{2k_n I_D} = 2 \text{ mS}$$
(c)

(d)
$$R_{in} = R_G = 3.33 \text{ M}\Omega$$

$$\frac{v_{gs}}{v_{sig}} = \frac{R_{in}}{R_{sig} + R_{in}} = 0.97$$

$$\frac{v_0}{v_{gs}} = -g_m(r_0 || R_D || R_L) = -8.2$$

$$\frac{v_0}{v_{sig}} = -8.0$$

5.93 A CG amplifier using an NMOS transistor for which $g_m = 4$ mA/V has a 5-k Ω drain resistance R_D and a 5-k Ω load resistance R_L . The amplifier is driven by a voltage source having a 500 Ω resistance. What is the input resistance of the amplifier? What is the overall voltage gain G_v ? By what factor must the bias current I_D of the MOSFET be changed so that $R_{\rm in}$ matches $R_{\rm sig}$?

5.93
$$R_{in}=\frac{1}{g_m}=250\Omega$$

$$Gv=\frac{v_o}{v_{sig}}=\frac{R_{in}}{R_{sig}+R_{in}}g_m(R_D\parallel~R_L)=+3.3$$
 $g_m=\sqrt{2k_nI_D}$, so for $\frac{1}{g_m}=R_{sig}$, g_m must decrease to 1/2, and I_D must decrease to 1/4

5.712 The NMOS transistor in the CS amplifier shown in Fig. P5.112 has $V_t = 0.7 \text{ V}$ and $V_A = 50 \text{ V}$.

- (a) Neglecting the Early effect, verify that the MOSFET is operating in saturation with $I_D=0.5~\mathrm{mA}$ and $V_{OV}=0.3~\mathrm{V}$. What must the MOSFET's k_n be? What is the dc voltage at the drain?
- (b) Find R_{in} and G_{v} .
- (c) If $v_{\rm sig}$ is a sinusoid with a peak amplitude $\hat{v}_{\rm sig}$, find the maximum allowable value of $\hat{v}_{\rm sig}$ for which the transistor remains in saturation. What is the corresponding amplitude of the output voltage?
- (d) What is the value of resistance R_s that needs to be inserted in series with capacitor C_S in order to allow us to

double the input signal $\hat{v}_{\rm sig}$? What output voltage now results?

5.112

$$V_t = 0.7 \text{ V.}$$

 $V_A = 50 \text{ V.}$
a) with $I_D = 0.5 \text{ mA}$
 $V_G = +2 \text{ V} V_S + 1 \text{ V.} V_{GS} = +1 \text{ V.}$
 $V_{OV} = 0.3 \text{ V.}$
 $0.5 \text{ mA} = \frac{1}{2} k_n V_{oV}^2 \Rightarrow k_n = 11.1 \frac{\text{mA}}{\text{V}^2}$
 $V_D = 5 - (5 \text{ K})(0.5 \text{ mA}) = +2.5 \text{ V.}$
 $V_{GD} = -0.5 \text{ V.} < V_t \therefore \text{ Saturation}$
b) $R_{\text{in}} = 200 \text{ K} \parallel 300 \text{ K} = 120 \text{ k}\Omega$
 $G_V = \frac{v_o}{v_{\text{sig}}} = -\frac{R_{\text{in}}}{120 \text{ K} - R_{\text{in}}} g_m$
 $(5 \text{ K} \parallel r_o \parallel 5 \text{ K.})$
 $g_m = \frac{2I_D}{V_{oV}} = 3.33 \text{ mS}$
 $r_O = \frac{V_A}{I_D} = 100 \text{ k}\Omega$
 $G_V = -4.1$
c) $v_{sig} = \hat{v}_{sig} \sin \omega t$
 $g_m(5 \text{ K} \parallel 5 \text{ K} \parallel 100 \text{ K.}) = 8.12$

$$V_{gd} + V_{GD} = \hat{v}_o + \frac{\hat{v}_0}{8.12} - 0.5$$

 $\leq V_t = 0.7 \text{V}.$
 $\hat{v}_o \text{ max} = 1.07 \text{ Vpk}$
 $\hat{v}_g, \text{ max} = \frac{\hat{v}_o \text{ max}}{8.12} = 132 \text{ mvpk}$
 $\hat{v}_{sig}, \text{ max} = \frac{\hat{v}_o \text{ max}}{4.1} = 261 \text{ mvpk}$
d) Add $R_S = \frac{1}{g_m} = 300 \Omega,$
then $v_{gs} = \frac{v_g}{1 + g_m R_s} = \frac{v_g}{2}$
 $\frac{g_m R_L}{1 + g_m R_S} = \left| \frac{v_o}{v_g} \right| = 4.06$
 $\hat{v}_o + \frac{\hat{v}}{4.06} - 0.5 \leq 0.7 \text{ V}.$
 $\Rightarrow \hat{v}_o, \text{ max} = 0.96 \text{ V}.$