Code Number: _____

UC-CS/ECE-DQE

21 September 2007

- Math Foundations I (Mostly Induction). (Warning: Write carefully; this problem's grader is very concerned about the *forms* of inductive proofs. For example, be sure to state inductive hypotheses very precisely.)
 - 1. [25 pts]
 - (a) Which of the following numbers is largest? (a) 9^{9^9} , (b) 9!!, (c) $9^{9!}$. Justify your answer. (Use the usual priority and associativity assumptions: $9^{9^9} = 9^{(9^9)}$, 9!! = (9!)!, and $9^9! = (9^9)!$.)
 - (b) Which of the following 3 numbers is largest?

Prove your answer, using your answer from part (1a). Note that (a), (b), and (c) is each written with 9 symbols. *For full credit, you must state a generalization of this result and prove it by induction on the number of symbols.*

2. [25 pts] Below we illustrate *pairing parentheses* in mathematical formula:

$$\underbrace{(3.0+x)}_{(3.0+x)} \cdot (\underbrace{(2.0-x^2)}_{(2.0-x^2)} / \underbrace{(x+\underbrace{(2.0-x)^2}_{(2.0-x^2)})}_{(2.0-x^2)})$$

The left parenthesis — '(' — at the start of each "underbrace" is paired with the right parenthesis — ')' — at its end. A pairing (or *proper pairing*) of parentheses is a 1-1 correspondence between left parentheses and right parentheses in the formula such that

- (a) every left parenthesis is paired with a right parenthesis to the right of it, and
- (b) if we have paired two pairs of parentheses in a single expression, they must be paired as either

$$\cdots \underbrace{(\cdots \underbrace{(\cdots)}}_{} \cdots \underbrace{)} \cdots \qquad \text{or} \qquad \cdots \underbrace{(\cdots)}_{} \cdots \underbrace{(\cdots)}_{} \cdots$$

— one pair must be entirely within the other, or one must come entirely after the other.

Prove that the parentheses in a string σ of characters can be (properly) paired if and only if:

- (a) σ has the same number of right parentheses as left parentheses, and
- (b) for τ any initial substring of σ (*i.e.*, whenever $\sigma = \tau v$ for some string v), τ has at least as many left parentheses as right parentheses.

Code Number: _____

UC-CS/ECE-DQE

21 September 2007

- Math Foundations II (Mostly Counting). Parts (1-2) require only answers, but, to qualify for partial credit for wrong answers, you may have to clarify how you got them.
 - [21 pts] A design is made by placing 8 stones on the 144 squares of a 12 × 12 square checkerboard. Each stone occupies just 1 square, and 2 stones may not occupy the same square. Assume we can't tell the stones apart, so we don't count interchanging 2 stones as giving us a different design. (But we *can* tell all the squares of the board apart — *e.g.*, they might be numbered 1-144.) Do not simplify your answers to this question.
 - (a) How many different designs can be made?
 - (b) How many different designs can be made with ≤ 1 stone in each row?
 - (c) How many different designs can be made with ≤ 1 stone in each row and ≤ 1 stone in each column?
 - 2. [7 pts] How many strictly monotonically increasing functions are there from the set $\{1, 2\}$ to the set $\{1, 2, ..., 1000\}$ (the set of all integers from 1 to 1000)? *Simplify your answer*.
 - 3. **[22 pts]** To preserve maximum communications privacy, UC has installed private network lines linking each pair among 6 mailboxes in the CS/ECE mailroom (813 Rhodes). The lines are shown below, with the lines connecting to 813Z shown in boldface. Some of the lines are maintained by CITS; and the rest, by the CS/ECE departments.
 - (a) Suppose that the groups maintaining the lines out of 813Z are as shown below (and we don't know who maintains the others).

Prove that there must be 3 mailboxes where (i) all 3 lines connecting the 3 to each other are controlled by CITS or (ii) all 3 lines connecting the 3 to each other are controlled by CS/ECE.

(b) Prove that, no matter which organization (CITS or CS/ECE) manages each of the 15 communications lines, there will be 3 mailboxes where all 3 lines connecting them to each other are maintained by the same organization.