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Abstract— How to model a concept, and how to discover a
new concept, remain fundamental in machine learning research.
Real world concepts are usually high-dimensional and have
complicated distributions. Gaussian Mixture Model has strength
in modeling complicated distributions. In this paper, we propose
a data-driven concept modeling and discovery framework using
GMM, with online updating mechanism for fast computation in
real world application. Experiments show that our proposed al-
gorithm can handle complicated concepts modeling and discovery
with satisfactory performance in real time.

I. INTRODUCTION

How to model a concept, and discover a new concept
are fundamental in knowledge representation research, e.g. in
machine learning, cognitive science, data mining. A concept is
a combination of properties associated with salience weights.
Detailed explanation will be given in Section II.

Real world concepts are usually not easy to describe, i.e.
they can be having different combinations of properties, which
can be modeled by clusters in conceptual space, i.e. can
have complicated distribution in probabilistic interpretation.
For example, theapple concept can bered, smooth, round
or green, smooth, roundor evenbrown, wrinkled, round, etc.
Therefore, for this example there will be three distributions
in conceptual space, which will be then modeled by a set of
Gaussian mixture models.

A concept can be either defined by an expert manually,
or learned from enough samples automatically using machine
learning theory. In this paper, we propose a novel framework
for modeling concepts automatically and adaptively, learning
from enough observations of some certain concept in applica-
tion.

Other than traditionalcrisp concept, strict conceptandloose
conceptare required in some applications and also can be
controlled in this framework by threshold settings. Astrict
concept is important in some critical environments such as
“apple industry” if the manufacturing line want to pick certain
type of “red” color or “green” color as for different pricing, it
can be achieved by limit the concept range, i.e.strict concept.

Gaussian Mixture Modeling can approximate a compli-
cated distribution using multi-Gaussian distributions. Recently
GMM has successful applications in background modeling for

computer vision [6], etc. It’s obvious that complicated distri-
bution can be modeled using a set of Gaussian distributions,
which illustrated as Fig. 1. GMM is also widely used in content
based image retrieval[4].
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Fig. 1. GMM approximation

Expectation Maximization (EM) [1] is a common algorithm
for estimating the GMM parameters. EM algorithm is used in
statistics for finding maximum likelihood estimates of para-
meters in probabilistic models, where the model depends on
unobserved latent variables. EM alternates between performing
an expectation (E) step, which computes an expectation of
the likelihood by including the latent variables as if they
were observed, and a maximization (M) step, which com-
putes the maximum likelihood estimates of the parameters by
maximizing the expected likelihood found on the E step. The
parameters found on the M step are then used to begin another
E step, and the process is repeated. EM will finally converge to
a local minimal parameter estimation of the GMM distribution.

However, EM is computation intensive if there are too many
parameters to estimate. Besides, it cannot be applied to online
approximation because EM requires a constant observation set
for estimating the parameters in all iterations.

Therefore, online approximation for GMM is proposed in
this paper to solve this concept modeling problem. A series of
observations can be considered as random process from time



0 to time t. The advantages for this algorithm are that it does
not require a constant set of observations, in other word, it
can adapt to the new coming observations while memorizing
its history (keeping record of the GMM parameters and
updating it), and that it can be computed in real time for
practical applications. It is also called incremental learning,
which keeps both recent knowledge and historical knowledge
in consistency, which is more desirable in machine learning
applications.

Note that when human is learning a concept in early age, it
requires enough observations to help “build up” the concept
in mind. For instance, if a baby sees only one apple, it is not
likely that it will learn the concept ofapple perfectly. If the
baby sees a certain amount ofapple observations, theapple
concept can be built and has some kind of “tolerance” for this
appleconcept, such as how red or green it can be. In the same
sense, we argue that the “concept” can be modeled by a set of
Gaussian mixtures given enough observations for that concept.
Besides, the “tolerance” can be also modeled asstrict concept
or “loose concept” , which is achievable by threshold setting
based on different applications.

It’s also worthy to mention that to quantify “salience
weight” for each property in conceptual space, we can im-
plement it using different similarity measures, e.g. logistic
function, or fuzzy hamming distance [3] in recent years.

This paper is organized as follows: Section II explains
concept modeling in conceptual space and its theoretical
fundamentals. Section III describes Gaussian Mixture Models
and its online updating mechanism. Section IV proposes the
algorithms for concept modeling and discovery. Finally in
Section V will illustrate the experiment results and followed
with Section VI concluding the contributions of this paper and
possible future work.

II. CONCEPT MODELING

Conceptual space can provide an approach to knowledge
representation that exploits the real world attributes while
preserving their semantics.[5] The meaning of dimension,
domain, property, and concept are explained as follows.

A. Dimension

A conceptual space can be modeled with a set of dimensions
capable of describing the quality attributes of the information
to be represented. These dimensions can be either psychophys-
ical (e.g. natural language) or scientific (e.g. measuring the
values associated with sensors, actuators, etc.) For a given
application, there is generally no unique assignment of dimen-
sions. Experts familiar with that application knowledge will
specify the appropriate dimensions that capture its essential
qualities. Dimensions generally possess geometric and/ortopo-
logical structures that enable us to measure distances between
two values.

B. Domain

Dimensions can be organized into multiple domains. Ob-
jects in a conceptual space are represented by points, one in

each domain, that characterize their dimensional values. This
constitutes the fundamental geometric character of conceptual
spaces for knowledge representation. Note that only within
the same domain can we measure the similarity between
two objects as the similarity between their corresponding
points. Using theappleconcept example, we can measure the
similarity between “red” and “green” in color domain, but we
cannot naively measure the similarity between “red” in color
domain and “sweet” in taste domain.

C. Property

A property is a convex region in some domain. The notion
of convexity for property regions arises from the logical
assumption that if two objects possess some property, then
all objects located between them should likewise possess
that property. Here, the “betweenness” can have different
definition. In natural languages, properties often correspond
to adjective-like descriptions (e.g., “red” , “tall” , or “round”)
in a particular domain. Properties can also capture more
complex descriptions of objects, including shapes, actions and
functional characteristics. They can also be defined in proba-
bilistic or fuzzy terms, which provide a distinct advantageover
representational schemes that require strict set membership.
In other word, property in some domain can be obtained by
applying “Voronoi tessellation” (from data clustering theory)
of the domain, which divides the total volume into regions.

D. Concept

A concept is a combination of properties, typically across
multiple domains, along with the salience weights associated
with each property and the correlations (used in the sense
of co-occurrences, as opposed to statistical correlationswhich
can be positive or negative) between properties. The choice
of properties is predicated upon the descriptive features of the
application. The salience weights may be dependent upon the
context.

For example, the conceptapple may include the domains
of color, taste, surface texture, shape, nutritional content and
density, with multiple property regions within each domainto
account for the various types of apples. In a visual context,
color properties may be quite important, while in a cooking
context, much less so. Furthermore, there will be distinct
correlations between red, green or yellow color propertiesand
a smooth surface texture property, and likewise between brown
color and a wrinkled surface texture, and there will be anti-
correlations between the converse pairings, e.g., brown with
smooth, which do not occur together.

In this paper, we model the concept basically using a set of
properties, which can be considered as the coordinate axis in
the conceptual space, as well as salience weights associated
with each property, which can be considered as the length on
each property coordinate axis.

III. GAUSSIAN MIXTURE MODEL

Gaussian distribution is a basic probabilistic distribution,
which is generally defined as (1), whereXt is the observation



in time t, andµ , Σ are mean and variance for the Gaussian
distribution respectively.
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(1)
In this paper, we consider every Gaussian distribution as one

dimensional without lost of generality, because if a concept
owns a combination of domains, e.g. K dimensional Gaussian
distribution, we can assume the variance matrix as identity
matrix, and then according to the independence of Gaussian
distribution, this K dimensional Gaussian can be modeled as
K 1-dimensional Gaussian distribution.

Gaussian Mixture Model is defined as the sum of a set of
weighted Gaussian distribution. The recent history of obser-
vations {X1,X2, . . . ,Xt} for one concept is modeled by a
mixture of K Gaussian distributions. The probability of the
current observation in GMM is defined as (2), wherewi,t is
the weight for ith Gaussian in timet, K is the number of
Gaussian used for approximate the distribution in conceptual
space.

P (Xt) =

K
∑

i=1

wi,t ∗ η(Xt, µ,Σ) (2)

Each time a new observationXt comes in, the online GMM
algorithm has to update the following three sets of parameters:

• The weight for each Gaussian (3), where0 < α < 1,
is the learning rate, and indicates the importance for the
GMM concept of the incoming knowledge. If the concept
drifts often,α can be set higher, and vice visa. Each time
GMM update finishes, the weights are normalized to 1
so that the definition of probability is guaranteed.

wi,t = (1− α)wi,t + αMi,t (3)

where

Mi,t =

{

1 if Xt matches theith Gaussian
0 if no match

• Mean for each Gaussian as (4). The meaning of this
update is obvious: the matched Gaussian will shift closer
to the new coming observation if match;

µt = (1− ρ) ∗ µt−1 + ρ ∗Xt (4)

• Variance for each Gaussian as (5) and (6);

σ2

t = (1− ρ)σ2

t−1
+ ρ(Xt − µt)

T (Xt − µt) (5)

ρ = αη(Xt|µk, σk) (6)

After a certain period of learning, i.e. certain amount of
coming observations, the concept modeled by this online
GMM algorithm converges, which means that the concept is
well-learned by the GMM models.

IV. ALGORITHM

In this section, two algorithms are proposed for concept
modeling and concept discovery respectively.

A. GMM Concept Modeling

As explained in Section II, concept modeling in conceptual
space can be described as Gaussian mixtures, given a series
of observationsXt. Detailed algorithm is shown as Algorithm
1.

In Algorithm 1, we assume all properties are independent,
so we can apply online GMM to each property, which is
implemented asXt(Dimension).

For each property, we useK Gaussian to learn the real
distribution online. If ith dimension of the new coming
observationXt match the existingjth Gaussian, then we
update its corresponding weight, mean, variance accordingto
(3) to (6).

Sort all the Gaussian mixtures inith dimension property
decreasingly by weight/variance, which is a measure of im-
portance of each Gaussian distribution. If no match is found,
we replace the least important Gaussian mean with theith
dimension value of new coming observation, and replace its
variance and weight with initial values.

Therefore, in every round of iteration, the GMM is updated
based on the new coming observation without destroying
the previous history. After certain amount of observations,
the concept C will converge to a set of GMM parameters,
{mean(i, j), var(i, j), weight(i, j)}.

Strict or loose concepts can be also modeled by line 6
in Algorithm (1), because BW threshold actually determines
the radius of the Gaussian distribution hyper-sphere in the
conceptual space. If the application requires strict concept,
the BW value can be set as low as possible, and maybe more
Gaussian mixtures will be needed in approximate the actual
concept distribution, vice visa.

B. GMM Concept Discovery

A new concept can be found if no match consistently occurs
in the current concept. For example, if theapple concept is
learned by our online GMM algorithm as red, smooth, round
or green, smooth, round or brown, wrinkled, round. If after a
period of time the coming observations are more like yellow,
smooth, ellipsoid, then we can be more confident that the
observations forpear concept are coming, which is a new
concept in the conceptual space and also be learned in the
same framework.

In our proposed algorithm in Algorithm 2, if the number
of no match occurs is greater than a threshold T, then all the
unmatched observations are redirect to another new concept
learning process, which calls the sameGMMConceptModeling
function.

V. EXPERIMENT

In this section, experiments are performed on some syn-
thesized observation dataset of theappleconcept appeared as



Algorithm 1 Concept Modeling Function GMMConcept-
Modeling(Xt)

1: Define properties in conceptual space for the conceptC ;
2: Formulate the input stream of observations for some

conceptC, Xt = tth observation forC;
3: Dimension← Number of properties;
4: α← Learning rate;
5: K ← Number of Gaussians;
6: BW ← BandwidthofGaussian;
7: mean(Dimension,K)← mean for eachGaussian;
8: var(Dimension,K)← variancefor eachGaussian;
9: weight[Dimension,K]← weightfor eachGaussian;

10: for eachXt do
11: for i = 1 to Dimension do
12: match← 0;
13: for j = 1 to K do
14: if |Xt(i)−mean(i, j)| < BWvar(i, j) then
15: match = j;
16: break;
17: end if
18: end for
19: for j = 1 to K do
20: if match == j then
21: weight(i, j) = (1− α) · weight(i, j) + α;
22: else
23: weight(i, j) = (1− α) · weight(i, j);
24: end if
25: end for
26: for j = 1 to K do
27: if match == j then
28: pt = Gaussian(mean(i, j), var(i, j));
29: mean(i, j) = (1− α · pt) ·mean(i, j) + α · pt ·

Xt(i);
30: var(i, j) = (1−α·pt)·var(i, j)+α·pt·(Xt(i)−

mean(i, j))2;
31: end if
32: end for
33: Sort weight(i, j)/var(i, j) decreasingly and re-

arrange
{ mean(i, j), var(i, j), weight(i, j) } accordingly;

34: Replace the least weight Gaussian if none is matched.
35: end for
36: end for
37: C ← {mean(i, j), var(i, j), weight(i, j)};
38: Return conceptC;

Algorithm 2 Concept Discovery Function GMMConcept-
Discovery(Xt)

1: NMC ← Number of no matches obtained
from GMMConceptModeling function;

2: T ← Threshold for new concept discovery;
3: if (NMC > T ) then
4: NewCon = GMMConceptModeling(X(t −

NMC))
5: end if
6: ReturnNewCon;

examples in this paper. All the experiments are finished in real
time.

The learning rate is set to be 0.01 or 0.02, which is a good
balance between current knowledge and history knowledge.
The number of GaussianK is 3. The more number of Gaussian
is used, the better convergence will be achieved . Bandwidth
is set to be 2.0, which affect the range of a Gaussian.

The first step is to specify all properties: we have color,
shape, texture as the three properties for learning theapple
concept. (Note that in real world application this specification
can vary according to requirements.)

Without lost of generality, suppose theapple concept can
be described as red, smooth, round and green, smooth, round.
More complicated concepts can also be learned by this algo-
rithm.

A collection of 200 observations of thisapple concept are
synthesized and the concept is learned by usingGMMCon-
ceptModelingfunction.

Figure 2 to 4 illustrate the actual distribution for the concept,
and the learned GMM results. After feeding 200 observations
of the concept into the algorithm, the GMM converges to
actual concept distribution. Blue histogram means the real
distribution for theapple concept; Red asterisk curve means
the learned GMM distribution; Red, magenta, green dashed
curves mean the 1st, 2nd, 3rd Gaussian mixture component
respectively. The peak of each Gaussian denotes its weight in
the whole GMM distribution.

In Figure 3 and 4, because the actual distribution is more
like single Gaussian distribution, we can see the GMM result
is also quite convincing: Red asterisk curve is sufficient to
approximate the actual distribution so the other two curves
barely contribute to the final GMM distribution.

We can also see that in Figure 2 to 4 , there is still some
gap between GMM distribution and actual distribution, which
denotes the error between the GMM concept modeling and
actual concept distribution. One of reason for this is that
we need more observations to approximate a more accurate
concept model. The other reason is for more complicated
distribution, we need more Gaussian to approximate. Given
enough observations for the concept, online GMM can con-
verge to the actual distribution of a concept.
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Fig. 2. GMM for appleconcept color property
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Fig. 3. GMM for appleconcept texture property
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Fig. 4. GMM for appleconcept shape property

VI. CONCLUSION AND FUTURE WORK

We propose a novel probabilistic framework for concept
modeling and discovery using online Gaussian Mixture Model,
and in conclusion, the contributions in this paper are:

• Propose a probabilistic framework for concept modeling
and discovery. Under this framework, complicated con-
cepts can be modeled using data-driven mechanism, and
automatic new concept discovery is possible.

• Online Gaussian Mixture Model is employed to solve
this distribution approximation problem in real time,
and adaptive to the emerging amount of observations
belonging to some concept, i.e. incremental learning.

• Algorithms for concept modeling and discovery are pro-
vided which can be applied to practical applications, and
real-time performance can be guaranteed.

Based on current progress proposed in this paper, how
to model other types of concepts, e.g. , verbs, which are
connections between nouns ? Note that in our algorithms, the
properties have to be assigned beforehand, is that possible
to incrementally increase additional properties when new
instances containing such high-dimensional information of
one concept come? These are remaining as future work.
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