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Abstract—How to model a concept, and how to discover a computer vision [6], etc. It's obvious that complicatedtdis
new concept, remain fundamental in machine learning research. puytion can be modeled using a set of Gaussian distributions,

Real world concepts are usually high-dimensional and have \\nichillustr Fia. 1. GMM is also widel in n
complicated distributions. Gaussian Mixture Model has strength bas(; d i;satgzt?gt?};alg[ﬁ] -G s also widely used in conte

in modeling complicated distributions. In this paper, we propose
a data-driven concept modeling and discovery framework using
GMM, with online updating mechanism for fast computation in

real world application. Experiments show that our proposed al-
gorithm can handle complicated concepts modeling and discovery 0.0451
with satisfactory performance in real time. 004}

0.035 [

. INTRODUCTION

0.03-

How to model a concept, and discover a new concept 0.025}
are fundamental in knowledge representation researchire.g 002}
machine learning, cognitive science, data mining. A cohizep 0.015-
a combination of properties associated with salience wgigh
Detailed explanation will be given in Section II.

Real world concepts are usually not easy to describe, i.e.
they can be having different combinations of propertiesctvh
can be modeled by clusters in conceptual space, i.e. can

,
12

have complicated distribution in probabilistic inter@tbn. Fig. 1. GMM approximation
For example, theapple concept can beed, smooth, round
or green, smooth, roundr evenbrown, wrinkled, roundetc.  Expectation Maximization (EM) [1] is a common algorithm

Therefore, for this example there will be three distribntio for estimating the GMM parameters. EM algorithm is used in
in conceptual space, which will be then modeled by a set éfatistics for finding maximum likelihood estimates of para
Gaussian mixture models. meters in probabilistic models, where the model depends on

A concept can be either defined by an expert manuallynobserved latent variables. EM alternates between peirigr
or learned from enough samples automatically using machiag expectation (E) step, which computes an expectation of
learning theory. In this paper, we propose a novel framewotie likelihood by including the latent variables as if they
for modeling concepts automatically and adaptively, le&yn were observed, and a maximization (M) step, which com-
from enough observations of some certain concept in appligautes the maximum likelihood estimates of the parameters by
tion. maximizing the expected likelihood found on the E step. The

Other than traditionatrisp conceptstrict concepaindloose parameters found on the M step are then used to begin another
conceptare required in some applications and also can Igestep, and the process is repeated. EM will finally convesge t
controlled in this framework by threshold settings. sfrict a local minimal parameter estimation of the GMM distribatio
conceptis important in some critical environments such as However, EM is computation intensive if there are too many
“apple industry” if the manufacturing line want to pick c&@n parameters to estimate. Besides, it cannot be applied toeonl
type of “red” color or “green” color as for different pricingg approximation because EM requires a constant observatton s
can be achieved by limit the concept range, steict concept for estimating the parameters in all iterations.

Gaussian Mixture Modeling can approximate a compli- Therefore, online approximation for GMM is proposed in
cated distribution using multi-Gaussian distributionecBntly this paper to solve this concept modeling problem. A serfes o
GMM has successful applications in background modeling fobservations can be considered as random process from time



0 to time t. The advantages for this algorithm are that it doesich domain, that characterize their dimensional valubis. T
not require a constant set of observations, in other word,cibnstitutes the fundamental geometric character of cdanakp
can adapt to the new coming observations while memorizisgaces for knowledge representation. Note that only within
its history (keeping record of the GMM parameters anthe same domain can we measure the similarity between
updating it), and that it can be computed in real time fdwo objects as the similarity between their corresponding
practical applications. It is also called incremental héag, points. Using theapple concept example, we can measure the
which keeps both recent knowledge and historical knowledganmilarity between “red” and “green” in color domain, but we
in consistency, which is more desirable in machine learnimgnnot naively measure the similarity between “red” in colo
applications. domain and “sweet” in taste domain.

Note that when human is learning a concept in early age, it
requires enough observations to help “build up” the conceft PTOPENy
in mind. For instance, if a baby sees only one apple, it is notA property is a convex region in some domain. The notion
likely that it will learn the concept ofpple perfectly. If the of convexity for property regions arises from the logical
baby sees a certain amount &bple observations, thepple assumption that if two objects possess some property, then
concept can be built and has some kind of “tolerance” for thigl objects located between them should likewise possess
appleconcept, such as how red or green it can be. In the sathat property. Here, the “betweenness” can have different
sense, we argue that the “concept” can be modeled by a sedefinition. In natural languages, properties often comasp
Gaussian mixtures given enough observations for that gianceo adjective-like descriptions (e.g., “red” , “tall” , ordund”)
Besides, the “tolerance” can be also modeledtast concept in a particular domain. Properties can also capture more
or “loose concept” , which is achievable by threshold sgttincomplex descriptions of objects, including shapes, astam
based on different applications. functional characteristics. They can also be defined in grob

Its also worthy to mention that to quantify “saliencebilistic or fuzzy terms, which provide a distinct advantayer
weight” for each property in conceptual space, we can imepresentational schemes that require strict set menipersh
plement it using different similarity measures, e.g. ltigis In other word, property in some domain can be obtained by
function, or fuzzy hamming distance [3] in recent years. applying “Voronoi tessellation” (from data clustering tmg)

This paper is organized as follows: Section Il explaingf the domain, which divides the total volume into regions.
concept modeling in conceptual space and its theoretical
fundamentals. Section Il describes Gaussian Mixture Ndx)dé:)'
and its online updating mechanism. Section IV proposes theA concept is a combination of properties, typically across
algorithms for concept modeling and discovery. Finally imultiple domains, along with the salience weights assediat
Section V will illustrate the experiment results and folav with each property and the correlations (used in the sense
with Section VI concluding the contributions of this papada of co-occurrences, as opposed to statistical correlatidnsh

Concept

possible future work. can be positive or negative) between properties. The choice
of properties is predicated upon the descriptive featufékeo
Il. CONCEPT MODELING application. The salience weights may be dependent upon the

Conceptual space can provide an approach to knowledgentext.
representation that exploits the real world attributeslevhi For example, the concepipple may include the domains
preserving their semantics.[5] The meaning of dimensioaf color, taste, surface texture, shape, nutritional aunéad
domain, property, and concept are explained as follows. density, with multiple property regions within each dom#on

_ ) account for the various types of apples. In a visual context,

A. Dimension color properties may be quite important, while in a cooking

A conceptual space can be modeled with a set of dimensiawtext, much less so. Furthermore, there will be distinct
capable of describing the quality attributes of the infaiiora correlations between red, green or yellow color propesiss
to be represented. These dimensions can be either psyahophysmooth surface texture property, and likewise betweenrbro
ical (e.g. natural language) or scientific (e.g. measurlmg tcolor and a wrinkled surface texture, and there will be anti-
values associated with sensors, actuators, etc.) For a gigerrelations between the converse pairings, e.g., browh wi
application, there is generally no unique assignment okdim smooth, which do not occur together.
sions. Experts familiar with that application knowledgdlwi In this paper, we model the concept basically using a set of
specify the appropriate dimensions that capture its eiséenproperties, which can be considered as the coordinate m@xis i
gualities. Dimensions generally possess geometric atmjpor the conceptual space, as well as salience weights assbciate
logical structures that enable us to measure distancesbrtwwith each property, which can be considered as the length on
two values. each property coordinate axis.

B. Domain 1. GAUSSIAN MIXTURE MODEL

Dimensions can be organized into multiple domains. Ob- Gaussian distribution is a basic probabilistic distributi
jects in a conceptual space are represented by points, onevirich is generally defined as (1), whekg is the observation



in time ¢, and . , 3 are mean and variance for the Gaussian IV. ALGORITHM

distribution respectively. In this section, two algorithms are proposed for concept

modeling and concept discovery respectively.
— 1 1 Ty —1
n(Xe, p, ) = WGXP(_§(XMM) T (X, ) A. GMM Concept Modeling
) ) _ o 1) As explained in Section Il, concept modeling in conceptual
In this paper, we consider every Gaussian distribution &s ogpace can be described as Gaussian mixtures, given a series

dimensional without lost of generality, because if a CONCegf ghservationsy;. Detailed algorithm is shown as Algorithm
owns a combination of domains, e.g. K dimensional Gaussign

distribution, we can assume the variance matrix as identity|, Algorithm 1, we assume all properties are independent,

matrix, and then according to the independence of Gaussigf e can apply online GMM to each property, which is

distribution, this K dimensional Gaussian can be modeled Aplemented asy, (Dimension).

K 1-dimensional Gaussian distribution. For each property, we us& Gaussian to learn the real
Gaussian Mixture Model is defined as the sum of a set gfsyipution online. If ith dimension of the new coming

weighted Gaussian distribution. The recent history of DbsebbservationXt match the existingjth Gaussian, then we

vations {X;, X»,..., X;} for one concept is modeled by a,pqate its corresponding weight, mean, variance according
mixture of K Gaussian distributions. The probability of thq3) to (6).

current observation in GMM is defined as (2), whesgt is gt gl the Gaussian mixtures imh dimension property

the weight forith Gaussian in time, K is the number of gecreasingly by weight/variance, which is a measure of im-
Gaussian used for approximate the distribution in con@ptyyqrtance of each Gaussian distribution. If no match is found

Space. we replace the least important Gaussian mean withithe
% dimension value of new coming observation, and replace its
P(X,) = Zwi,t s« (Xpy 11, %) (2) Vvariance and weight with initial values.

Therefore, in every round of iteration, the GMM is updated
based on the new coming observation without destroying

Ea_ch time a new observatioky, comes in, the online GMM the previous history. After certain amount of observatjons
algorithm has to update the following three sets of pararsetey, concept C will converge to a set of GMM parameters,

« The weight for each Gaussian (3), whete< o < 1,  [mean(i, j), var(i, j), weight(i, j)}.
is the learning rate, and indicates the importance for thestrict or loose concepts can be also modeled by line 6
GMM concept of the incoming knowledge. If the concepiy Algorithm (1), because BW threshold actually determines
drifts often,a can be set higher, and vice visa. Each timge radius of the Gaussian distribution hyper-sphere in the
GMM update finishes, the weights are normalized to donceptual space. If the application requires strict cpfce
so that the definition of probability is guaranteed. the BW value can be set as low as possible, and maybe more
Gaussian mixtures will be needed in approximate the actual

=1

wip = (= ajwiy+alMi, (3) concept distribution, vice visa.
where ,
) ) B. GMM Concept Discovery
M. - 1 if X; matches theth Gaussian be found if h , |
it 0 if no match A new concept can be found if no match consistently occurs

in the current concept. For example, if thgple concept is
o Mean for each Gaussian as (4). The meaning of thigarned by our online GMM algorithm as red, smooth, round
update is obvious: the matched Gaussian will shift closer green, smooth, round or brown, wrinkled, round. If after a

to the new coming observation if match; period of time the coming observations are more like yellow,
smooth, ellipsoid, then we can be more confident that the
e =1 —p)* 1+ p* Xy (4) observations fompear concept are coming, which is a new

concept in the conceptual space and also be learned in the

same framework.

) ) T In our proposed algorithm in Algorithm 2, if the number

o =1 =p)oj_y +p(Xe —pe)" (Xe —pe)  (5)  of no match occurs is greater than a threshold T, then all the
unmatched observations are redirect to another new concept

learning process, which calls the sa@&IMConceptModelin
p = an(Xe|px, ox) (6) functioﬁ_p P ?

« Variance for each Gaussian as (5) and (6);

After a certain period of learning, i.e. certain amount of
coming observations, the concept modeled by this online V. EXPERIMENT
GMM algorithm converges, which means that the concept isIn this section, experiments are performed on some syn-
well-learned by the GMM models. thesized observation dataset of tiggple concept appeared as



Algorithm 2 Concept Discovery Function GMMConcept-
Discovery(Xt)
1. NMC «— Number of no matches obtained
from G M M Concept M odeling function;
2. T« Threshold for new concept discovery;

Algorithm 1 Concept Modeling Function GMMConcept- 3: if (NMC > T) then

Modeling(X;) 4. NewCon = GMMConceptModeling(X(t —
1: Define properties in conceptual space for the concept NMC))
2. Formulate the input stream of observations for somé: end if
conceptC, Xt = tth observation foiC; 6: Return NewCon;
3: Dimension <— Number of properties;
4: o «— Learningrate;
5. K «— Number of Gaussians; o . o .
6: BW « BandwidthofGaussian; gxamples in this paper. All the experiments are finishedah re
7: mean(Dimension, K) « mean for each Gaussian; time.
8: var(Dimension, K) «— variance for each Gaussian; The learning rate is set to be 0.01 or 0.02, which is a good
9: weight[Dimension, K| «— weight for each Gaussian; ~ balance between current knowledge and history knowledge.
10: for eachX; do The number of Gaussiaki is 3. The more number of Gaussian
11: for i =1 to Dimension do is used, the better convergence will be achieved . Bandwidth
12: match «— 0; is set to be 2.0, which affect the range of a Gaussian.
13: for j=1to K do o The first step is to specify all properties: we have color,
1a: if [X, (i) —mean(i, j)| < BWwvar(i, j) then shape, texture as the three properties for learningage
15: match = j; concept. (Note that in real world application this spectfara
16: lg”‘?]flk? can vary according to requirements.)
i; eneczjnforl Without lost of generality, suppose ttapple concept can
19: for j =1 to K do be describe(_j as red, smooth, round and green, smooth, round.
20: if match = j then More complicated concepts can also be learned by this algo-
21: weight(i, 7) = (1 — a) - weight(i, j) + a; rithm.
22: else A collection of 200 observations of thipple concept are
23: weight(i,7) = (1 — «) - weight(i, j); synthesized and the concept is learned by ustMMCon-
24: end if ceptModelingfunction.
25: end for Figure 2 to 4 illustrate the actual distribution for the cept
26: for j=1to K do and the learned GMM results. After feeding 200 observations
27 if match == j then of the concept into the algorithm, the GMM converges to
28: pt = Gaussian(mean(i, j), var(i, j)); actual concept distribution. Blue histogram means the real
20: mean(i, j) = (1 —a-pt) -mean(i,j) +a-pt-  distribution for theapple concept; Red asterisk curve means
Xt(i); the learned GMM distribution; Red, magenta, green dashed
30: var (i, j) = (1—a-pt)-var(i, j)+a-pt-(Xt(i)—  curves mean the 1st, 2nd, 3rd Gaussian mixture component
mean(i, j))%; respectively. The peak of each Gaussian denotes its weight i
3L end if the whole GMM distribution.
32 end for . o
33 Sort weight(i, j)/var(i,j) decreasingly and re- In F|gure 3 an(_j 4, pec_aus_e the actual distribution is more
like single Gaussian distribution, we can see the GMM result
arrange . . o . ) o
. . . . : . is also quite convincing: Red asterisk curve is sufficient to
{ mean(i, j),var(i, j), weight(i, j) } accordingly; . N
34: Replace the least weight Gaussian if none is matchech.prox'mate the actual pllstrlbutlon S0 _the_ other two curves
35 end for arely contribute to the final GMM distribution.
36: end for We can also see that in Figure 2 to 4 , there is still some
37: C — {mean(i, j),var(i, j), weight(i, j)}; gap between GMM distribution and actual distribution, whic
38: Return concept; denotes the error between the GMM concept modeling and

actual concept distribution. One of reason for this is that

we need more observations to approximate a more accurate
concept model. The other reason is for more complicated

distribution, we need more Gaussian to approximate. Given

enough observations for the concept, online GMM can con-

verge to the actual distribution of a concept.



Online GMM: Alpha=0.02, K=3, BW=2.0
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Fig. 2. GMM for apple concept color property

Online GMM: Alpha=0.02, K=3, BW=2.0

0.09 * 1
0.08 ’ 1
0.07f 1
0.06 ’ 1
0.05F %, . 1
¥
0.04 x4 \ 4
S ok
Vi Y
0.03F % I- 1
0.02 - = =1stG [

0.01r 3rd G 1

Fig. 3. GMM for apple concept texture property

Online GMM: Alpha=0.02, K=3, BW=2.0
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Fig. 4. GMM for apple concept shape property

VI. CONCLUSIONAND FUTURE WORK

We propose a novel probabilistic framework for concept
modeling and discovery using online Gaussian Mixture Mpdel
and in conclusion, the contributions in this paper are:

o Propose a probabilistic framework for concept modeling
and discovery. Under this framework, complicated con-
cepts can be modeled using data-driven mechanism, and
automatic new concept discovery is possible.

o Online Gaussian Mixture Model is employed to solve
this distribution approximation problem in real time,
and adaptive to the emerging amount of observations
belonging to some concept, i.e. incremental learning.

« Algorithms for concept modeling and discovery are pro-
vided which can be applied to practical applications, and
real-time performance can be guaranteed.

Based on current progress proposed in this paper, how
to model other types of concepts, e.g. , verbs, which are
connections between nouns ? Note that in our algorithms, the
properties have to be assigned beforehand, is that possible
to incrementally increase additional properties when new
instances containing such high-dimensional informatidn o
one concept come? These are remaining as future work.
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