
Combinational & Sequential Test Generation.1

Combinational Test Generation

• Test Generation (TG) Methods
- (1) From truth table (2) Using Boolean equation (3) Using Boolean

 difference (4) From circuit structure

• TG from Circuit Structure
- Common Concepts
- Algorithms : D-Algorithm (Roth 1967), 9-V Algorithm (Cha 1978),

 PODEM (Goel 1981), FAN (Fujiwara 1983), Socrates (Schultz 1987)

(Source: NCTU ������)

Combinational & Sequential Test Generation.2

• A test pattern

• A test pattern with don't cares

• Test generation: generates a test for a target fault.

A Test Pattern

stuck-at 10
0
1
1 1

0/1
0/1

(Good value and faulty value
are different at a PO.)

stuck-at 01
x
x
x x

x
1/0

1/0

Combinational & Sequential Test Generation.3

Test Generation Methods
(From Truth Table)

Ex: How to generate tests for
the stuck-at 0 fault (fault α)α)α)α)?

c

a

f
b

Impractical !!

abc f fαααα

√√√√

000 0 0
001 0 0
010 0 0
011 0 0
100 0 0
101 1 1
110 1 0
111 1 1

Combinational & Sequential Test Generation.4

Test Generation Methods
(Using Boolean Equation)

Since f = ab+ac, fα α α α = ac =>
 Tαααα = the set of all tests for fault αααα

= ON_set(f) ∗∗∗∗ OFF_set(fαααα) + OFF_set(f) ∗ ∗ ∗ ∗ ON_set(fαααα)
= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1}
= {(a,b,c) | abc'=1}
= { (110) }.

• ON_set(f): All input combinations that make f have value 1.
OFF_set(f): All input combinations that make f have value 0.

High complexity !!

Since it needs to compute the faulty
function for each fault.

Combinational & Sequential Test Generation.5

Boolean Difference

• Physical Meaning of Boolean Difference
– For a logic function F(X)=F(x1, ..., xi, ..., xn), find all the input combinations

that make the change of value in xi also cause the change of value in F.

• Logic Operation of Boolean Difference
– The Boolean difference of F(X) w.r.t. input xi is

• Relationship between TG and Boolean Difference
������ ����	�
��� ����

�����

�� ��	����� ����	�
��� ����

�����

�� ��	

�� ���

�� �

���� ��	�⊕ � ��
����� � ��	�•� ��
��� ��	�•� ��
��

F0
1

0
1

1
0or

x1

xi

xn

circuit F1
0

1
0

0
1or

x1

xi

xn

circuit

Combinational & Sequential Test Generation.6

Applying Boolean Difference to
Test Generation (1/2)

c

a

f
b

The set of all tests for line a s-a-1 is {(a,b,c) | a'∗∗∗∗ (b+c)=1} = {(01x), (0x1)}.
The set of all tests for line a s-a-0 is {(a,b,c) | a∗∗∗∗ (b+c)=1} = {(11x), (1x1)}.

Case 1: Faults are present at PIs.

f = ab+ac => ��
��

���� ����⊕ ���	����	• �
��������
 ��

Combinational & Sequential Test Generation.7

Applying Boolean Difference to
Test Generation (2/2)

The set of all tests for line h s-a-1 is
{ (a,b,c)|h'∗∗∗∗ (a'+c')=1 } = { (a,b,c)|(a'+b')∗∗∗∗ (a'+c')=1 } = { (0xx), (x00) }.

The set of all tests for line h s-a-0 is
{(a,b,c)|h∗∗∗∗ (a'+c')=1} = {(110)}.

Case 2: Faults are present at internal lines.

f = h+ac, h = ab =>

c

a

f
b h

��
�

������⊕ ���	���� •	��� •	����

Combinational & Sequential Test Generation.8

Test Generation Methods
(From Circuit Structure)

• Two basic goals:
Fault activation (FA)
Fault propagation (FP)

c

a

f
b 1/0

0

1
1

0 fault propagation

fault activation

=> Line justification (LJ)

where 1/0 means that the good value is 1 and the faulty value
is 0 and is denoted as D. Similarly, 0/1 is denoted as D'.
D and D' are called fault effects (FE).

Combinational & Sequential Test Generation.9

Common Concepts for Structural TG
• The FA problem => a LJ problem.
• The FP problem =>

(1) Select a FP path to a PO => decisions.
(2) Once the path is selected => a set of LJ problems.

• The LJ problems => decisions or implications .
ex:

To justify c=1 => a=1 and b=1. (implication)
To justify c=0 => a=0 or b=0. (need make decisions)

• Incorrect decision => Backtracking => Another decision.
• Once the fault effect is propagated to a PO and all line

values to be justified are justified, the test is generated.
 Otherwise, the decision process must be continued

repeatedly until all possible decisions have been tried.

a
b c

Combinational & Sequential Test Generation.10

Ex: Decisions When Fault Propagation

FA => a=1, b=1, c=1 => G1= D', G3=0; FP => through G5 or G6.
Decision: through G5 => G2=1 => d=0, a=0. => inconsistency => backtracking!!
Decision: through G6 => G4=1 => e=0. => done!!
The resulting test is 111x0.

D-frontier: The set of all gates whose output value is currently x but have one or more
fault signals on their inputs. Ex: Initially, the D-frontier of this example is
{G5, G6}.

{G5,G6}

G5 G6
F S

The corresponding decision tree

f1

f2

G5

G6

G1

G2

G3
G4

a
bc

d

e

Combinational & Sequential Test Generation.11

Ex: Decisions When Line Justification

FA => h=D'; FP => e=1, f=1 (=> o=0); FP => q=1, r=1.
To justify q=1 => l=1 or k=1.
Decision: l=1 => c=1, d=1 => m=0, n=0 => r=0. => inconsistency => backtracking!!
Decision: k=1 => a=1, b=1.
To justify r=1 => m=0 or n=0 (=> c=1 or d=1). => done!!

J-frontier: The set of all gates whose output value is known but is not implied by its
input values. Ex: Initially, the J-frontier of the example is {q=1, r=1}.

a
b
c
d

e
f
h

p

k

l
q

r
m
n
o

s

The corresponding decision tree

q=1

F
l=1 k=1

r=1
m=1

S

o=1
n=1

Combinational & Sequential Test Generation.12

Implications

• Implication: computation of the values that can be
uniquely determined.
- Local implication: propagation of values from one line to its immediate

successors or predecessors.
- Global implication: the propagation involving a larger area of the circuit

and reconvergent fanout.

• Maximum implication principle: perform as many
implications as possible.

• Maximum implications help us to either reduce the
number of problems that need decisions or to reach an
inconsistency sooner.

Combinational & Sequential Test Generation.13

Local Implications (Forward)

0
x

1
1

1
x a

0

x

x

J-frontier={ ...,a }

Before

D'
D a

x D-frontier={ ...,a }

0
x

1
1

1
0 a

0

1

0

J-frontier={ ... }

After

D'
D a

0 D-frontier={ ... }

Combinational & Sequential Test Generation.14

Local Implications (Backward)

x
x

x
1

x
x

x 1
x

a
0

0

1

J-frontier={ ... }

1
1

0
1

x
x

1 1
1

a
0

0

1

J-frontier={ ...,a }

Before After

Combinational & Sequential Test Generation.15

Global Implications

A
B
C

D

E
1 F

A
B
C

D

E
0 F

1

(1) Future unique D-drive.

(2) F=1 implies B=1.
(Static learning)

(3) F=0 implies B=0 when A=1.
(Dynamic learning)

d

x g
x

x

x

D

x e

x

Before

x
D

1

x

D

x

x

After

(2), (3) are based on contraposition law: (A=>B) <=> (!B => !A).

Combinational & Sequential Test Generation.16

D-Algorithm: Example

• Logic values = {0, 1, D, D', x}.

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc
0
1
1

1

D

Combinational & Sequential Test Generation.17

D-Algorithm: Value Computation
Decision Implication Comments

a=0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D
d?0

j=1 Propagate via n
k=1
l=1
m=1

n=D
e?0
e=1
k=D Contradiction

e=1 Propagate via k
k=D
e?0
j=1

l=1 Propagate via n
m=1

n=D
f?0
f=1
m=D Contradiction

f=1 Propagate via m
m=D
f?0
l=1
n=D

Combinational & Sequential Test Generation.18

{i,k,m}

{k,m,n}

{m,n}F

F S

i

n k

mn

D-Algorithm: Decision Tree

• Decision node: the associated D-frontier.
branch: the decision taken, i.e., the gate selected from the D-frontier.

• The D-algorithm first tried to propagate the fault solely through i, then
through both i and k, and eventually succeeded when all three paths were
simultaneously sensitized.

Two times of backtracking!!

Combinational & Sequential Test Generation.19

9-V Algorithm: Example

• Logic values = {0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u}, where 0/u={0,D'},
1/u={D,1}, u/0={0,D}, u/1={D',1}, u/u={0,1,D,D'}.

• Thus reduces the amount of search done for multiple path
sensitization in D-algorithm.

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc
0
1
1

1

D

u/1

u/1

u/1

Combinational & Sequential Test Generation.20

9-V Algorithm: Value Computation

Decision Implication Comments

a=0 Activate the fault
h=1
b=1 Unique D-drive
c=1
g=D
i=u/1
k=u/1
m=u/1

d=1 Propagate via i
i=D
d?0
n=1/u

l=u/1 Propagate via n
j=u/1

n=D
f?u/0
f=1
f?0
e?u/0
e=1
e?0
k=D
m=D

Combinational & Sequential Test Generation.21

9-V Algorithm: Decision Tree

{i,k,m}

{k,m,n}

S

i

n
No backtracking!!

• The main difference between the D-algorithm and 9-V algorithm is:
Whenever there are k possible paths for fault propagation , the D-
algorithm may eventually try all the 2k -1 combinations of paths.
However, since the 9-V algorithm tries only one path at a time without
precluding simultaneous fault propagation on the other k-1 paths, it will
enumerate at most k ways of fault propagation.

Combinational & Sequential Test Generation.22

PODEM (Path-Oriented Decision Making)

• We have seen that the problems of FA and FP lead to sets
of LJ problems. The LJ problems can be solved via value
assignments.

• In D-algorithm, the value assignments are allowed on any
internal lines. => backtracking could occur at any line.

• However, PODEM allows value assignments only on PIs.
=> backtracking can occur only at the PIs.

– It treats a value Vk to be justified for line k as an objective (k,Vk).
– A backtracing procedure maps the objective into a PI assignment that is

likely to contribute to achieving the objective.
– Why called PODEM (Path-Oriented DEcision Making) ?

Combinational & Sequential Test Generation.23

A Simple Backtracing Procedure

A
B

FC D

E
x

x
x

xx x

A
B

FC D

E
0

1
1

xx x
A
B

FC D

E
0

1
1

01 1

=> A
B

FC D

E
0

1
1

xx x

=>

Objective = (k,Vk).
Step 1. Find a x-path from line k to a PI, say A.
Step 2. Count the inversion parity of the path.
Step 3. If the inversion parity is even => return (A, Vk). Otherwise => return (A, Vk').
* A path is a x-path if all of its lines have value x.

Ex: Objective = (F,1).

The first time of backtracing

The second time of backtracing

Combinational & Sequential Test Generation.24

PODEM: Example 1

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
bc

0
1
1

1 1

D

D'

0

1
0

0 11

x-path (to PO) check fail
=> backtracking!!

Objective

Combinational & Sequential Test Generation.25

PODEM: Value Computation
Objective PI assignment Implications D-frontier Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d?0

i=D k,m,n
k=1 e=0 e?1

j=0
k=1
n=1 m x-path check fail !!

e=1 e?0 reversal
j=1
k=D m,n

l=1 f=1 f?0
l=1
m=D
n=D

Combinational & Sequential Test Generation.26

PODEM: Decision Tree

e

fF

S

a

b

c

d

0

1

1

1

0 1

1

* decision node: the PI selected to assign value.
branch: the value assigned to the PI.

Combinational & Sequential Test Generation.27

• To guide the backtracing process of PODEM, controllability for each line
is measured.

– CY1(a): the probability that line a has value 1.
– CY0(a): the probability that line a has value 0.
Ex: f = ab. Assume CY1(a)=CY0(a)=CY1(b)=CY0(b)=0.5.
 => CY1(f)=CY1(a)xCY1(b)=0.25, CY0(f)=CY0(a)+CY0(b)-CY0(a)xCY0(b)=0.75.

• How to guide the backtracing using controllability?
– Principle 1: Among several unsolved problems, first attack the hardest one.
– Principle 2: Among several solutions of a problem, first try the easiest one.

ex:

 Objective=(c,1) => Choose path c-a to backtracing.
Objective=(c,0) => Choose path c-a to backtracing.

A More Intelligent Backtracing

CY1(a) = 0.33, CY1(b) = 0.5
CY0(a) = 0.67, CY0(b) = 0.5

a
b c

Combinational & Sequential Test Generation.28

A
B

C
G6

CY1=0.25

CY1=0.656
G5

G7

G1

G2

G3

G4

PODEM: Example 2 (1/3)

The controllabilities are calculated by a testability measure program TEA.
Initially, CY1 and CY0 for all PIs are set to 0.5.

1/0

Initial objective=(G5,1).
G5 is an AND gate => Choose the hardest-1 => Current objective=(G1,1).
G1 is an AND gate => Choose the hardest-1 => Arbitrarily, Current objective=(A,1).
A is a PI => Implication => G3=0.

1

0

Combinational & Sequential Test Generation.29

PODEM: Example 2 (2/3)

The initial objective satisfied? No! => Current objective=(G5,1).
G5 is an AND gate => Choose the hardest-1 => Current objective=(G1,1).
G1 is an AND gate => Choose the hardest-1 => Arbitrarily, Current objective=(B,1).
B is a PI => Implication => G1=1, G6=0.

A
B

C
G6

CY1=0.25

CY1=0.656
G5

G7

G1

G2

G3

G4

1/01

0

1
1

0

Combinational & Sequential Test Generation.30

PODEM: Example 2 (3/3)

The initial objective satisfied? No! => Current objective=(G5,1).
The value of G1 is known => Current objective=(G4,0).
The value of G3 is known => Current objective=(G2,0).
A, B is known => Current objective=(C,0).
C is a PI => Implication => G2=0, G4=0, G5=D, G7=D.

A
B

C
G6

CY1=0.25

CY1=0.656
G5

G7

G1

G2

G3

G4

1/0=D1

0

1
1

0

0
0

0

D

No backtracking!!

Combinational & Sequential Test Generation.31

If The Backtracing Is Not Guided (1/3)

Initial objective=(G5,1).
Choose path G5-G4-G2-A => A=0.
Implication for A=0 => G1=0, G5=0 => Backtracking to A=1.
Implication for A=1 => G3=0.

A
B

C
G6

G5

G7

G1

G2

G3

G4

1

0

1/0

Combinational & Sequential Test Generation.32

A
B

C
G6

G5

G7

G1

G2

G3

G4

The initial objective satisfied? No! => Current objective=(G5,1).
Choose path G5-G4-G2-B => B=0.
Implication for B=0 => G1=0, G5=0 => Backtracking to B=1.
Implication for B=1 => G1=1, G6=0.

1

0

1
1

0

1/0

If The Backtracing Is Not Guided (2/3)

Combinational & Sequential Test Generation.33

If The Backtracing Is Not Guided (3/3)

A
B

C
G6

G5

G7

G1

G2

G3

G4

The initial objective satisfied? No! => Current objective=(G5,1).
Choose path G5-G4-G2-C => C=0.
Implication for C=0 => G2=0, G4=0, G5=D, G7=D.

1

0

1
1

0

1/0=D

0
0

0

D

A

B

C

F

S

F

0 1

10

0

Two times of backtracking!!

Combinational & Sequential Test Generation.34

a
b

c
d
e
f

i

h

g

m

n

p

k

j

l

ECAT Circuit: PODEM

0->D'
x
0

No backtracking !!

Combinational & Sequential Test Generation.35

a
b

c
d
e
f

i

h

g

m

n

p

k

j

l

0->D'0

1

1

ECAT Circuit: D-Algorithm

l=1

n=1

(h=1,i=0)(h=0,i=1)

n=0

l=0

(j=0,k=0) (j=1,k=1)

(c=0,d=0) (c=1,d=1)

(e=1,f=0)

START

Conflict!!

x

Combinational & Sequential Test Generation.36

Features of PODEM

• PODEM examines all possible input patterns implicitly but
exhaustively (branch-and-bound) as tests for a given fault.
=> It is a complete TG.

• PODEM does not need
– consistency check, as conflicts can never occur;
– the J-frontier, since ther are no values that require justification;
– backward implication, because values are propagated only forward.

• Backtracking is implicitly done by simulation rather than by
an explicitly save/restore process. (State saving and restoring is a
time-consuming process.)

• Experimental results show that PODEM is generally faster
than the D-algorithm. [4]

Combinational & Sequential Test Generation.37

Redundant Faults

F

b
1

c
0

0 1
FF

1

23

decision tree for D-algorithm decision tree for PODEM

• Presence of the fault does not change the functionality of the circuit under test.
• Ex:

- Good function: h = (a+b)' (b+c)' (c+d)' = a'b'c'd'
 Faulty function = (a+b)' (c+d)' = a'b'c'd'
- Perform test generation

a

b

c
d

e

f

g

h

f=0

F

b=1 c=1

F

Combinational & Sequential Test Generation.38

• FAN introduces two major extensions to the backtracing
concept of PODEM:

1. Rather than stopping at PIs, backtracing in FAN may stop at internal lines.
=> will reduce the number of backtracking.

2. Rather than trying to satisfy one objective, FAN uses a multiple-backtrace
procedure that attempts to simultaneously satisfy a set of objectives. (In
PODEM, a PI assignment satisfying one objective may preclude achieving
another one, and this leads to backtracking.)

FAN (Fanout-Oriented TG)

ex:

Backtracing stops at lines F and G
rather than A,B,C,D,and E.

F
A
B
C

D
E ...

...

head lines

G

Combinational & Sequential Test Generation.39

ATPG
• ATPG (Automatic Test Pattern Generation):

Generate a set of test patterns for a set of target faults.

• Basic scheme:
Initialize vector set to NULL
Repeat

Generate a new test vector
Evaluate fault coverage for the test vector
If the test vector is acceptable Then add it to vector set

Until required fault coverage is obtained

• To accelerate the ATPG:
Random patterns are often generated first to detect easy- to-detect faults,
then a deterministic TG is performed to generate tests for the remaining
faults.

Combinational & Sequential Test Generation.40

Sequential Test Generation

• For Circuits with Unknown Initial States
- Time-frame Expansion Based: Extended D-algorithm (IEEE TC,

1971), 9-V Algorithm (IEEE TC, 1976), EBT (DAC, 1978 & 1986),
BACK (ICCD, 1988), ...

- Simulation-Based: CONTEST (IEEE TCAD, 1989), TVSET (FTCS,
1988), ...

• For Circuits with Known Initial States
- STALLION (IEEE TCAD, 1988), STEED (IEEE TCAD, May 1991), ...

Combinational & Sequential Test Generation.41

Iterative Logic Array (ILA) Model for
Sequential Circuits

Combinational
Logic

FF

FF

Y1
Y2y2

y1

PI PO

Combinational
Logic

PI PO

y Y

Combinational
Logic

PI PO

y Y

Combinational
Logic

PI PO

y Y
Time-frame 0 Time-frame 1 Time-frame n

....

Combinational & Sequential Test Generation.42

1. Pick up a target fault f.
2. Create a copy of a combinational logic, set it time-frame 0.
3. Generate a test for f using D-algorithm for time-frame 0.
4. When the fault effect is propagate to the DFFs, continue

fault propagation in the next time-frame.
5. When there are values required in the DFFs, continue the

justification in the previous time-frame.

Extended D-Algorithm [1]

(Kubo, NEC Research & Development, Oct. 1968)
(Putzolu and Roth, IEEE TC, June 1971)

Combinational & Sequential Test Generation.43

Example for Extended D-Algorithm

FF2

FF1

O

I

Y1

Y2y2

y1

Combinational & Sequential Test Generation.44

Time-frame 0

O

I

y2

y1 Y1
Y2

Example: Step 1

1

D*D*
0

D*

Combinational & Sequential Test Generation.45

Example: Step 2

O

I

O

I

Time-frame 0 Time-frame 1

1

0 D*

1

D*

D*

D*D*

Combinational & Sequential Test Generation.46

Example: Step 3

O

I

O

I

Time-frame 0 Time-frame 1Time-frame -1

O

I
1

0 D*

1

D*

D*

D*D*

0

0

Combinational & Sequential Test Generation.47

9-V Sequential TG [2]

• Extended D-algorithm is not complete.
• If nine-value, instead of five-value, is used, it will be a

complete algorithm. (Since it takes into account the possible
repeated effects of the fault in the iterative array model.)

(Muth, IEEE TC, June 1976)

Combinational & Sequential Test Generation.48

Example: Nine-Valued TG

FF

a

b

0/1

1/x

0/1 0/0

0/x 1/x

0/1

1/0

0/x

0/x
1/x

a

b

a

b

.....

Combinational & Sequential Test Generation.49

If Five-Valued TG Is Used

a

b

a

b

..... D*

D

10
0D*

1 0D*

1

0
1

0

0

Conflict

The test can not be generated by five-value TG.

Combinational & Sequential Test Generation.50

Problems of Mixed Forward and Reverse
Time Processing Approaches

• The requirements created during the forward process
(fault propagation) have to be justified by the backward
process later.

- Need going both forward and backward time frames.
- May need to maintain a large number of time-frames during test

generation.
- Hard to identify "cycles" .
- Implementation is complicated.

Combinational & Sequential Test Generation.51

CONTEST: A Concurrent Test Generator
for Sequential Circuits [3,4]

• Simulated-based test generation.
• It is subdivided into three phases :

– Initialization
– Concurrent fault detection
– Single Fault detection

• For different phases, different cost functions are defined
to guide the searching for vectors.

(Agrawal and Cheng, IEEE TCAD, Feb. 1989)

Combinational & Sequential Test Generation.52

Flow
 C

hart of C
O

N
TEST

Start

Starting
vectors given

N
o

Yes
G

enerate
initialization

vectors
G

enerate fault list

Fault sim
ulate w

ith given or
initialization vectors

G
enerate vectors to

cover undetected faults
in concurrent m

ode

Adequate
coverage

G
enerate vectors to cover
undetected faults using

dynam
ic C

/O
 cost functions

Adequate
coverage

Stop

N
o

Yes

N
o

Stop

Yes
Stop

Phase 1

Phase 2

Phase 3

Combinational & Sequential Test Generation.53

Simulation-Based Approaches

Advantages:
• Timing is considered.
• Asynchronous circuits can be handled.
• Can be easily implemented by modifying a fault simulator.

Disadvantages:
• Can not identify undetectable faults.
• Hard-to-activate faults may not be detected.

Combinational & Sequential Test Generation.54

!!!! Initialization is difficult.
- Justifying invalid states
- Long initialization sequence
- Simulator limitations

ex:

!!!! Timing can not be considered by time-frame expansion.
- Generated tests may cause races and hazards.
- Asynchronous circuits can not be handled.

Difficulties of Sequential Test
Generation

FF

1

1

x x

x

x 1

Combinational & Sequential Test Generation.55

Test Generation Assuming A
known Initial State

• Initialization is avoided.
• Assumption is valid for pure controllers

that usually have a reset mechanism
(reset PI, resetable flip-flops, ...).

Combinational & Sequential Test Generation.56

STALLION [5]

(Ma et al, IEEE TCAD, Oct. 1988)

1. Generate state transition graph (STG) for fault-free circuit.
2. Create a copy of the combinational logic, set it time-frame 0. Generate a test

for the fault using PODEM for the time-frame.
3. When the fault is propagated to PPOs (but not POs), find a fault propagation

sequence T to propagate the fault effect to a PO using the STG.
4. When there are values required in PPIs, say state S, find a transfer sequence

T0 from initial state S0 to S using the STG.
5. Fault simulate sequence T0+T. If it is not a valid test, go to 3 to find another

sequence.

Combinational & Sequential Test Generation.57

STALLION

Advantages:
• Transfer sequences are easily derived from STG.
• Good performance for controllers whose STG can be

extracted easily.
Disadvantages:

• Fault-free transfer sequence may not be valid.
• Extraction of STG may not be feasible for large circuits.

Heuristics:
• Construct partial STG only.
• If the required transfer sequence can not be derived

from partial STG, augment the partial STG.

Combinational & Sequential Test Generation.58

References

[1] G. R. Putzolu and T. P. Roth, "A Heuristic Algorithm for the Testing of
Asynchronous Circuits", IEEE Trans. Computers, pp. 639-647, June 1971.

[2] P. Muth, "A Nine-Valued Circuit Model for Test Generation", IEEE Trans.
Computers, pp. 630-636, June 1976.

[3] V. D. Agrawal, K. T. Cheng, and P. Agrawal, "A Directed Search Method for Test
Generation Using a Concurrent Simulator", IEEE Trans. CAD, pp. 131-138, Feb.
1989.

[4] K. T. Cheng and V. D. Agrawal, "Unified Methods for VLSI Simulation and Test
Generation", Chapter 7, Kluwer Academic Publishers, 1989.

[5] H-K. T. Ma, et al, "Test Generation for Sequential Circuits", IEEE Trans. CAD, pp.
1081-1093, Oct. 1988.

