Fault Modeling

- Some Definitions
- Why Modeling Faults
- Various Fault Models
- Fault Detection
- Fault Collapsing

(Source: NCTU 周景揚 教授)

Some Real Defects in Chips

• Processing Faults

- missing contact windows
- parasitic transistors
- oxide breakdown

• Material Defects

- bulk defects (cracks, crystal imperfections)
- surface impurities (ion migration)

• Time-Dependent Failures

- dielectric breakdown
- electromigration
- Packaging Failures
 - contact degradation
 - seal leaks

Faults, Errors and Failures

• Fault: A physical defect within a circuit or a system

- May or may not cause a system failure

• Error: Manifestation of a fault that results in incorrect circuit (system) outputs or states

- Caused by faults

- Failure: Deviation of a circuit or system from its specified behavior
 - Fails to do what it should do
 - Caused by an error
- Fault ---> Error ---> Failure

Why Model Faults ?

- Fault model identifies target faults
 - Model faults most likely to occur
- Fault model limits the scope of test generation
 - Create tests only for the modeled faults
- Fault model makes effectiveness measurable by experiments
 - Fault coverage can be computed for specific test patterns to reflect its effectiveness
- Fault model makes analysis possible
 - Associate specific defects with specific test patterns

Fault Models

- Stuck-At Faults
- Bridging Faults
- Transistor Stuck-On/Open Faults
- Functional Faults
- Memory Faults
- PLA Faults
- Delay Faults
- State Transition Faults

Single Stuck-At Faults

Assumptions: • Only one line is faulty.

- Faulty line permanently set to 0 or 1.
- Fault can be at an input or output of a gate.

Multiple Stuck-At Faults

- Several stuck-at faults occur at the same time
 - Important in high density circuits

• For a circuit with k lines

- there are 2k single stuck-at faults
- there are 3^k-1 multiple stuck-at faults

Why Single Stuck-At Fault Model?

- Complexity is greatly reduced. Many different physical defects may be modeled by the same logical single stuck-at fault.
- Single stuck-at fault is technology independent. Can be applied to TTL, ECL, CMOS, etc.
- Single stuck-at fault is design style independent. Gate Arrays, Standard Cell, Custom VLSI
- Even when single stuck-at fault does not accurately model some physical defects, the tests derived for logic faults are still valid for most defects.
- Single stuck-at tests cover a large percentage of multiple stuck-at faults.

Bridging Faults

- Two or more normally distinct points (lines) are shorted together
 - Logic effect depends on technology
 - Wired-AND for TTL

– Wired-OR for ECL

- CMOS ?

CMOS Transistor Stuck-ON

- Transistor stuck-on may cause ambiguous logic level.
 - depends on the relative impedances of the pull-up & pull-down networks
- When input is low, both P and N transistors are conducting causing increased quiescent current, called IDDQ fault.

CMOS Transistor Stuck-OPEN

• Transistor stuck-open may cause output floating.

CMOS Transistor Stuck-OPEN (Cont.)

- Can turn the circuit into a sequential one
- Stuck-open faults require two-vector tests

Functional Faults

• Fault effects modeled at a higher level than logic for function modules, such as

Decoders Multiplexers Adders Counters RAMs ROMs

Functional Faults of Decoder

f(L_i/L_j): Instead of line L_i , Line L_j is selected f(L_i/L_i+L_j): In addition to L_i , L_j is selected f($L_i/0$): None of the lines are selected

Memory Faults

• Parametric Faults

- Output Levels
- Power Consumption
- Noise Margin
- Data Retention Time

Functional Faults

- Stuck Faults in Address Register, Data Register, and Address Decoder
- Cell Stuck Faults
- Adjacent Cell Coupling Faults
- Pattern-Sensitive Faults

Memory Faults (Cont.)

- Pattern-sensitive faults: the presence of a faulty signal depends on the signal values of the nearby points
 - Most common in DRAMs

- Adjacent cell coupling faults
 - Pattern sensitivity between a pair of cells

PLA Faults

- Stuck Faults
- Crosspoint Faults
 - Extra/Missing Transistors

- Bridging Faults
- Break Faults

Missing Crosspoint Faults in PLA

- Missing crosspoint in AND-array
 Growth fault
- Missing crosspoint in OR-array
 - Disappearance fault

Equivalent stuck fault representation

Extra Crosspoint Faults in PLA

- Extra crosspoint in AND-array
 - Shrinkage or disappearance fault
- Extra crosspoint in OR-array
 - Appearance fault

Equivalent stuck fault representation

Gate-Delay-Fault

Slow to rise, slow to fall

 $-\overline{x}$ is slow to rise when channel resistance R1 is abnormally high

Gate-Delay-Fault

• Disadvantage:

Delay faults resulting from the sum of several small incremental delay defects may not be detected.

Path-Delay-Fault

- Propagation delay of the path exceeds the clock interval.
- The number of paths grows exponentially with the number of gates.

State Transition Graph

• Each state transition is associated with a 4-tuple: (source state, input, output, destination state)

Single State Transition Fault Model

• A fault causes a single state transition to a wrong destination state.

Fault Detection

- A test (vector) *t* detects a fault *f* iff $z(t) \oplus z_f(t) = 1$
 - *t* detects $f \le z_f(t) \neq z(t)$
- Example

 $Z_{1}=X_{1}X_{2}$ $Z_{2}=X_{2}X_{3}$ $Z_{1f}=X_{1}$ $Z_{2f}=X_{2}X_{3}$

The test 001 detects f because $z_1(001)=0$ while $z_{1f}(001)=1$

Sensitization

z (1011)=0 z_f (1011)=1 1011 detects the fault f (G₂ stuck-at 1) v/v_f : v = signal value in the fault free circuit v_f = signal value in the faulty circuit

Sensitization

• A test *t* that detects a fault *f*

- Activates f (or generate a fault effect) by creating different v and v_f values at the site of the fault
- Propagates the error to a primary output w by making all the lines along at least one path between the fault site and w have different v and v_f values
- A line whose value in the test changes in the presence of the fault *f* is said to be sensitized to the fault *f* by the test
- A path composed of sensitized lines is called a sensitized path

Detectability

- A fault *f* is said to be detectable if there exists a test *t* that detects *f*; otherwise, *f* is an undetectable fault
- For an undetectable fault f

 $z_f(x) = z(x)$

 No test can simultaneously activate f and create a sensitized path to a primary output

Undetectable Fault

- G₁ output stuck-at-0 fault is undetectable
 - Undetectable faults do not change the function of the circuit
 - The related circuit can be deleted to simplify the circuit

Test Set

- Complete detection test set: A set of tests that detect any detectable faults in a class of faults
- The quality of a test set is measured by fault coverage
- Fault coverage: Fraction of faults that are detected by a test set
- The fault coverage can be determined by fault simulation
 - >95% is typically required for single stuck-at fault model
 - >99.9% in IBM

Fault Equivalence

- A test *t* distinguishes between faults α and β if $z_{\alpha}(t) \neq z_{\beta}(t)$
- Two faults, α & β are said to be equivalent in a circuit, iff the function under α is equal to the function under β for any input combination (sequence) of the circuit.

$$- z_{\alpha}(t) = z_{\beta}(t)$$
 for all t

- No test can distinguish between α and β
- Any test which detects one of them detects all of them

Fault Equivalence

- AND gate: all s-a-0 faults are equivalent
- OR gate: all s-a-1 faults are equivalent
- NAND gate: all the input *s-a-0* faults and the output *s-a-1* faults are equivalent
- NOR gate: all input *s-a-1* faults and the output *s-a-0* faults are equivalent
- Inverter: input *s-a-1* and output *s-a-0* are equivalent input *s-a-0* and output *s-a-1* are equivalent

Equivalence Fault Collapsing

 n+2 instead of 2n+2 faults need to be considered for an n-input gate.

Fault Dominance

• A fault β is said to *dominate* another fault α in an irredundant circuit, iff every test (sequence) for α is also a test (sequence) for β .

$$T_{\alpha} * T_{\beta}$$

- No need to consider fault β for fault detection

Fault Dominance

- AND gate: Output *s-a-1* dominates any input *s-a-1*
- NAND gate: Output s-a-0 dominates any input s-a-1
- OR gate: Output *s-a-0* dominates any input *s-a-0*
- NOR gate: Output s-a-1 dominates any input s-a-0
- Dominance fault collapsing: The reduction of the set of faults to be analyzed based on dominance relation

Fault Dominance

• Detect A sa1: $z(t) \oplus z_f(t) = (CD \oplus CE) \oplus (D \oplus CE) = D \oplus CD = 1$

$$\Rightarrow (\mathbf{C} = \mathbf{0}, \ \mathbf{D} = \mathbf{1})$$

• Detect C sa1: $z(t) \oplus z_f(t) = (CD \oplus CE) \oplus (D \oplus E) = 1$ $\Rightarrow (C = 0, D = 1) \text{ or } (C = 0, E = 1)$ C sa1 --> A sa1 • Similarly C sa1 --> B sa1 C sa0 --> A sa0 C sa0 --> B sa0

Fault Collapsing

 For each *n*-input gate, we only need to consider *n*+1 faults

Prime Fault

- α is a prime fault if every fault that is dominated by α is also equivalent to α
- Representative Set of Prime Fault (RSPF)
 - A set that consists of exactly one prime fault from each equivalence class of prime faults
 - True minimal RSPF is difficult to find

Why Fault Collapsing?

- Memory & CPU-Time saving
 - ➡ To ease the burden for test generation and fault simulation in testing

# of total faults	# of equivalent faults	# of prime faults
1	60%	40%

Fault Collapsing for a Combinational Circuit

• 30 total faults ⇒ 12 prime faults

Checkpoint Theorem

- Primary-input & Fanout-Branches
- ⇒ a sufficient and necessary set of checkpoints in irredundant combinational circuits

- In fanout-free combinational circuits, primary inputs are the set of checkpoints
- Any test set which detects all signal (multiple) stuck faults on check points will detect all signal (multiple) stuck faults

Fault Collapsing

- The set of checkpoint faults can be further collapsed by using equivalence and dominance relation
- Example

- 10 checkpoint faults
- a s-a-0 \iff d s-a-0, c s-a-0 \iff e s-a-0 b s-a-0 \implies d \implies 0, b s-a-1 \implies d \implies 1
- 6 tests are enough