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Abstract 

 

Most of the earliest work in both experimental and theoretical/computational systems 

neuroscience focused on sensory systems and the peripheral (spinal) control of movement. 

However, over the last three decades, attention has turned increasingly towards “higher” 

functions related to cognition, decision-making and voluntary behavior. Experimental studies 

have shown that specific brain structures – the prefrontal cortex, the premotor and motor 

cortices, and the basal ganglia – play a central role in these functions, as does the dopamine 

system that signals reward during reinforcement learning. Because of the complexity of the 

issues involved and the difficulty of direct observation in deep brain structures, computational 

modeling has been crucial in elucidating the neural basis of cognitive control, decision making, 

reinforcement learning, working memory and motor control. The resulting computational models 

are also very useful in engineering domains such as robotics, intelligents agents and adaptive 

control. While it is impossible to encompass the totality of such modeling work, this chapter 

provides an overview of significant efforts in the last 20 years. It also outlines many of the 

theoretical issues underlying this work, and discusses significant experimental results that 

motivated the computational models.  

 

 

 

1. Introduction 

 

Mental function is usually divided into three parts: Perception, cognition, and action – the so-

called sense-think-act cycle. Though this view is no longer held dogmatically, it is useful as a 

structuring framework for discussing mental processes. Several decades of theory and 

experiment have elucidated an intricate, multi-connected functional architecture for the brain 

(Fuster, 2006, 2008) – a simplified version of which is shown in Figure 1. While all regions and 

functions shown – and many not shown – are important, this figure provides a summary of the 

main brain regions involved in perception, cognition and action. The highlighted blocks in 

Figure 1 are discussed in this chapter, which focuses mainly on the higher-level mechanisms for 

the control of behavior. 

 

The control of action (or behavior) is, in a real sense, the primary function of the nervous system. 

While such actions may be voluntary or involuntary, most of the interest in modeling has 

understandably focused on voluntary action. This chapter will follow this precedent. 

 

It is conventional to divide the neural substrates of behavior into “higher” and “lower” levels. 

The latter involves the musculoskeletal apparatus of action (muscles, joints, etc.) and the neural 

networks of the spinal cord and brainstem. These systems are seen as representing the actuation 



component of the action system, which is controlled by the higher-level system comprising 

cortical and sub-cortical structures. This division between a controller (the brain) and the plant 

(the body and spinal networks), which parallels the models used in robotics, has been criticized 

as arbitrary and unhelpful (Turvey, 1990; Sternad and Turvey, 1996), and there has recently been 

a shift of interest towards more embodied views of cognition (Pfeifer et al., 2007; Chemero, 

2011). However, the conventional division is useful for organizing material covered in this 

Chapter, which focuses primarily on the higher-level systems, i.e., those above the spinal cord 

and the brainstem.  

 

 

 

                            
 

Figure 1: A general schematic of primary signal flow in the nervous system. Many modulatory 

regions and connections, as well as several known connections, are not shown. The shaded areas 

indicate the components covered in this Chapter.  

 

 

The higher-level system can be divided further into a cognitive control component involving 

action selection, configuration of complex actions, and the learning of appropriate behaviors 

through experience, and a motor control component that generates the control signals for the 



lower-level system to execute the selected action . The latter is usually identified with the motor 

cortex (M1), premotor cortex (PMC) and the supplementary motor area (SMA), while the former 

is seen as involving the prefrontal cortex (PFC), basal ganglia (BG), the anterior cingulate cortex 

(ACC) and other cortical and subcortical regions (Houk and Wise, 2005).  With regard to the 

generation of actions per se, an influential viewpoint for the higher-level system is summarized 

by Doya (1999). It proposes that higher-level control of action has three major loci: The cortex, 

the cerebellum, and the basal ganglia. Of these, the cortex – primarily the motor cortex – 

provides a self-organized repertoire of possible actions that, when triggered, generate movement 

by activating muscles via spinal networks, the cerebellum implements fine motor control 

configured through error-based supervised learning (Kawato and Gomi, 1992), and the basal 

ganglia provide the mechanisms for selecting among actions and learning appropriate ones 

through reinforcement learning (Graybiel, 1995, 1997, 2005; Humphries et al., 2006). The motor 

cortex and cerebellum can be seen primarily as motor control (though see Houk, 2005) whereas 

the basal ganglia falls into the domain of cognitive control and working memory. The PFC is 

usually regarded as the locus for higher-order choice representations, plans, goals, etc. (Hoshi et 

al., 2000; Miller and Cohen, 2001; Rougier et al, 2005; Tanji and Hoshi, 2008), while the ACC is 

thought be involved in conflict monitoring (Botvinick et al., 2004; Brown and Braver, 2005; 

Botvinick, 2008). 

 

 

 

2. Motor Control 

Given its experimental accessibility and direct relevance to robotics, motor control has been a 

primary area of interest for computational modeling (Marr, 1969; Albus, 1975; Dickinson et al, 

2008). Mathematical, albeit non-neural, theories of motor control were developed initially within 

the framework of dynamical systems. One of these directions led to models of action as an 

emergent phenomenon (Haken et al., 1985; Saltzman and Kelso, 1987; Kugler and Turvey, 1987; 

Turvey, 1990; Schöner, 1990; Kelso, 1995; Morasso et al., 1997; Scholz and Schöner, 1999; 

Riley and Turvey, 2002; Riley et al., 2011a) arising from interactions among preferred 

coordination modes (Goldfield, 1995). This approach has continued to yield insights (Kelso, 

1995) and has been extended to multi-actor situations as well (Kelso et al., 2009; Riley et al., 

2011b; Ramenzoni et al., 2012). Another approach within the same framework is the equilibrium 

point hypothesis (Feldman and Levin, 2009; Latash, 2010), which explains motor control 

through the change in the equilibrium points of the musculoskeletal system in response to neural 

commands. Both these dynamical approaches have paid relatively less attention to the neural 

basis of motor control and focused more on the phenomenology of action in its context. 

Nevertheless, insights from these models are fundamental to the emerging synthesis of action as 

an embodied cognitive function (Pfeifer et al., 2007; Chemero, 2011). 

 

A closely related investigative tradition has developed from the early studies of gaits and other 

rhythmic movements in cats, fish and other animals (Sherrington, 1906, 1910a,b; Grillner et al., 

1995; Whelan, 1996; Grillner, 2003), leading to computational models for central pattern 

generators (CPGs), which are neural networks that generate characteristic periodic activity 

patterns autonomously or in response to control signals (Grillner, 2006). It has been found that 

rhythmic movements can be explained well in terms of CPGs – located mainly in the spinal cord 

– acting upon the coordination modes inherent in the musculoskeletal system. The key insight to 



emerge from this work is that a wide range of useful movements can be generated by modulation 

of these CPGs by rather simple motor control signals from the brain, and feedback from sensory 

receptors can shape these movements further (Grillner et al., 1995). This idea was demonstrated 

in recent work by Ijspeert et al. (2007)m showing how the same simple CPG network could 

produce both swimming and walking movements in a robotic salamander model using a simple 

scalar control signal. 

 

While rhythmic movements are obviously important, computational models of motor control are 

often motivated by the desire to build humanoid or biomorphic robots, and thus need to address a 

broader range of actions – especially aperiodic and/or voluntary movements. Most experimental 

work on apreiodic movement has focused on the paradigm of manual reaching (Georgopoulos et 

al., 1982, 1983, 1984, 1988, 1992; Ashe and Georgopoulos, 1994; Schwartz et al., 1988; Bullock 

and Grossberg, 1988; Bullock et al., 1993, 1998; Scott and Kalaska, 1995, 1997; Morasso et al., 

1997; Moran and Schwartz, 1999a; Shadmehr and Wise, 2005; d’Avella et al., 2006, 2008; 

Muceli et al., 2010). However, seminal work has also been done with complex reflexes in frogs 

and cats (Mussa-Ivaldi and Giszter, 1992; Giszter et al., 1993; Tresch et al., 1999; Kargo and 

Giszter, 2000; d’Avella et al., 2003; d’Avella and Bizzi, 2005; Ting and Macpherson, 2005; 

Torres-Oveido et al., 2006 ), isometric tasks (Sergio and Kalaska, 2003; Ajemian et al., 2008), 

ball-catching (Cesqui et al., 2012), drawing and writing (Morasso and Mussia-Ivaldi, 1982; 

Schwartz, 1992, 1993, 1994; Moran and Schwartz, 1999; Paine et al., 2004)  and postural control 

(Ting and MacPherson, 2005;  Torres-Oveido et al, 2006, 2008; Torres-Oveido and Ting, 2007; 

Ting and McKay, 2007). 

 

A central issue in understanding motor control is the degrees of freedom problem (Bernstein, 

1967), which arises from the immense redundancy of the system – especially in the context of 

multi-joint control. For any desired movement – such as reaching for an object – there are an 

infinite number of control signal combinations from the brain to the muscles that will accomplish 

the task (see Neilson and Neilson (2010) for an excellent discussion). From a control viewpoint, 

this has usually been seen as a problem because it precludes the clear specification of an 

objective function for the controller. To the extent that they consider the generation of specific 

control signals for each action, most computational models of motor control can be seen as direct 

or indirect ways to address the degrees of freedom problem. 

 

 

2.1 Cortical Representation of Movement 

It has been known since the seminal work by Penfield and Boldrey (1937) that stimulation of 

specific locations in the motor cortex elicit motor responses in particular locations on the body. 

This has led to the notion of a motor homunculus – a map of the body on the motor cortex. 

However, the issue of exactly what aspect of movement is encoded in the response of individual 

neurons is far from settled. A crucial breakthrough came with the discovery of population coding 

by Georgopoulos (Georgopoulos et al., 1982). It was found that the activity of specific neurons 

in the hand area of the motor cortex corresponded to reaching movements in particular 

directions. While the tuning of individual cells was found to be rather broad (and had a 

sinusoidal profile), the joint activity of many such cells with different tuning directions coded the 

direction of movement with great precision, and could be decoded through neurally plausible 

estimation mechanisms. Since the initial discovery, population codes have been found in other 



regions of the cortex that are involved in movement (Georgopoulos et al., 1982; Schwartz et al., 

1988; Schwartz, 1992, 1993, 1994; Ashe and Georgopoulos, 1994; Sanger, 1994; Moran and 

Schwartz, 1999a,b). Population coding is now regarded as the primary basis of directional coding 

in the brain, and is the basis of most brain-machine interfaces (BMI) and brain-controlled 

prosthetics (Chapin et al., 1999; Lebedev and Nicolelis, 2006). Neural network models for 

population coding have been developed by several researchers (Salinas and Abbott, 1995, 1996; 

Pouget and Sejnowski, 1994, 1997), and population coding has come to be seen as a general 

neural representational strategy with application far beyond motor control (Pouget and Snyder, 

2000). Excellent reviews are provided by Pouget et al. (2000, 2003). Mathematical and 

computational models for Bayesian inference with population codes are discussed by Ma et al. 

(2006) and Beck et al. (2008). 

 

An active research issue in the cortical coding of movement is whether it occurs at the level of 

kinematic variables, such as direction and velocity, or in terms of kinetic variables, such as 

muscle forces and joint torques. From a cognitive viewpoint, a kinematic representation is 

obviously more useful, and population codes suggest that such representations are indeed present 

in the motor cortex (Georgopoulos et al., 1982; Schwartz et al., 1988; Schwartz, 1992, 1993, 

1994; Ashe and Georgopoulos, 1994; Moran and Schwartz, 1999a,b; Ajemian et al., 2000, 2001) 

and prefrontal cortex (Hoshi et al., 2000; Averbeck et al., 2002). However, movement must 

ultimately be constructed from the appropriate kinetic variables, i.e., by controlling the forces 

generated by specific muscles and the resulting joint torques. Studies have indicated that some 

neurons in the motor cortex are indeed tuned to muscle forces and joint torques (Caminiti et al., 

1990; Graham et al., 2003; Scott & Kalaska, 1995, 1997; Sergio & Kalaska, 2003; Ajemian et 

al., 2008). This apparent multiplicity of cortical representations has generated significant debate 

among researchers (Ajemian et al., 2008). One way to resolve this issue is to consider the kinetic 

and kinematic representations as dual representations related through the constraints of the 

musculoskeletal system. However, Shah et al. (2004) have used a simple computational model to 

show that neural populations tuned to kinetic or kinematic variables can act jointly in motor 

control without the need for explicit coordinate transformations. 

 

Graziano et al (2005) studied movements elicited by sustained electrode stimulation of specific 

sites in the motor cortex of monkeys. They found that different sites led to specific complex, 

multi-joint movements such as bringing the hand to the mouth or lifting the hand above the head 

regardless of the initial position. This raises the intriguing possibility that individual cells or 

groups of cells in the motor cortex encode goal-directed movements that can be triggered as 

units. The study also indicated that this encoding is not open-loop, but can compensate – at least 

to some degree – for variation or extraneous perturbations. The motor cortex and other related 

regions (e.g., the supplementary motor area and the premotor cortex) appear to encode spatially 

organized maps of a few “canonical” complex movements that can be used as basis functions to 

construct other actions (Graziano et al., 2005; Graziano, 2006, Graziano, 2008). A 

neurocomputational model using self-organized feature maps has been proposed by Aflalo and 

Graziano (2006) for the representation of such canonical movements. 

 

In addition to rhythmic and reaching movements, there has also been significant work on the 

neural basis of sequential movements, with the finding that such neural codes for movement 

sequences exist in the supplementary motor area (Shima and Tanji, 1998; Sohn and Lee, 2007), 



cerebellum (Mushiake and Strick, 1995), basal ganglia (Mushiake and Strick, 1995) and the 

prefrontal cortex (Averbeck et al., 2002). Coding for multiple goals in sequential reaching has 

been observed in the parietal cortex (Baldauf et al., 2008). 

 

2.2 Synergy-Based Representations 

A rather different approach to studying the construction of movement uses the notion of motor 

primitives, often termed synergies (Flash and Hochner, 2005; Bizzi et al., 2008; Kelso, 2009). 

Typically, these synergies are manifested in coordinated patterns of spatiotemporal activation 

over groups of muscles, implying a force field over posture space  (Mussa-Ivaldi, 1988,1992). 

Studies in frogs, cats and humans have shown that a wide range of complex movements in an 

individual subject can be explained as the modulated superposition of a few synergies (Mussa-

Ivaldi and Giszter, 1992; Giszter et al., 1993; Tresch et al., 1999; Kargo & Giszter, 2000; 

d’Avella et al., 2003; d’Avella and Bizzi, 2005; Flash and Hochner, 2005; Ting and Macpherson, 

2005; Torres-Oveido et al., 2006; Bizzi et al., 2008; d’Avella and Pai, 2010). Given a set of n 

muscles, the n-dimensional time-varying vector of activities for the muscles during an action can 

be written as: 

𝒎𝒒(𝑡) =∑ 𝑐𝑘
𝑞𝒈𝑘(𝑡 − 𝑡𝑘

𝑞
𝑁

𝑘=1
) 

 

where 𝒈𝑘(𝑡) is a time-varying synergy function that takes only non-negative values, 𝑐𝑘
𝑞
 is the 

gain of the kth synergy used for action q, and 𝑡𝑘
𝑞
 is the temporal offset with which the kth 

synergy is triggered for action q (d’Avella et al., 2003). The key point is that a broad range of 

actions can be constructed by choosing different gains and offsets over the same set of synergies, 

which represent a set of hard-coded basis functions for the construction f movements. Even more 

interestingly, it appears that the synergies found empirically across different subjects of the same 

species are rather consistent (Tresch et al., 1999; Torres-Oveido and Ting, 2006), possibly 

reflecting the inherent constraints of musculoskeletal anatomy. Various neural loci have been 

suggested for synergies, including the spinal cord (Tresch et al., 1999; Graziano, 2008; Hart, 

2010), the motor cortex (Drew et al., 2008) and combinations of regions (Neilson and Neilson, 

2005, 2010). 

 

Though synergies are found consistently in the analysis of experimental data, their actual 

existence in the neural substrate remains a topic for debate (Kutch et al., 2008; Tresch and Jarc, 

2009). However, the idea of constructing complex movements from motor primitives has found 

ready application in robotics (Ijspeert et al., 2001, 2002a,b, 2003; Schaal et al., 2003, 2007), as 

discussed later in this Chapter. A hierarchical neurocomputational model of motor synergies 

based on attractor networks has recently been proposed by Byadarhaly and Minai (2011, 2012). 

 

 

2.3 Computational Models of Motor Control 

Motor control has been modeled computationally at many levels and in many ways, ranging 

from explicitly control-theoretic models through reinforcement-based models to models based on 

emergent dynamical patterns. This section provides a brief overview of these models. 

 

As discussed above the motor cortex (M1), premotor cortex (PMC) and the supplementary motor 

area (SMA) are seen as providing self-organized ``codes’’ for specific actions, including 



information on direction, velocity, force, low-level sequencing, etc., while the prefrontal cortex 

provides higher-level codes needed to construct more complex actions. These codes, comprising 

a repertoire of actions (Graybiel, 1995; Graziano, 2006), arise through self-organized learning of 

activity patterns in these cortical systems. The basal ganglia (BG) system is seen as the primary 

locus of selection among the actions in the cortical repertoire. The architecture of the system 

involving the cortex, basal ganglia and the thalamus, and in particular the internal architecture of 

the basal ganglia (Alexander et al, 1986), makes this system ideally suited to selectively 

disinhibiting specific cortical regions, presumably activating codes for specific actions (Graybiel 

et al., 1994; Graybiel, 1995; Grillner et al., 2005). The BG system also provides an ideal 

substrate for learning appropriate actions through a dopamine-mediated reinforcement learning 

mechanism (Schultz et al., 1997;  Schultz, 2000; Schultz and Dickinson, 2000; Montague, 2004). 

 

Many of the influential early models of motor control were based on control-theoretic principles 

(Wolpert and Kawato, 1998; Kawato, 1999; Wolpert and Ghahramani, 2000), using forward and 

inverse kinematic and dynamic models to generate control signals (Kawato et al., 1987; Bullock 

and Grossberg, 1988; Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 1995; Karniel and Inbar, 

1997, 2000; Bullock et al., 1998; Burnod et al, 1999) – see Shadmehr and Wise (2005) for an 

excellent introduction. These models have led to more sophisticated ones, such as MOSAIC 

(Modular Selection and Identification for Control) (Haruno, 2001) and AVITEWRITE (Adaptive 

Vector Integration to Endpoint Handwriting) (Paine et al., 2004). The MOSAIC model is a 

mixture-of-experts, consisting of many parallel modules, each comprising three sub-systems. 

These are: a forward model relating motor commands to predicted position, a responsibility 

predictor that estimates the applicability of the current module, and an inverse model that learns 

to generate control signals for desired movements. The system generates motor commands by 

combining the recommendations of the inverse models of all modules weighted by their 

applicability. Learning in the model is based on a variant of the EM algorithm. The model by 

Bullock et al. (1998) is a comprehensive neural model with both cortical and spinal components, 

and builds upon the earlier VITE model by Bullock and Grossberg (1988). The AVITEWRITE 

model (Paine et al., 2004), which is a further extension of the VITE model, can generate the 

complex movement trajectories needed for writing by using a combination of pre-specified 

phenomenological motor primitives (synergies). A cerebellar model for the control of timing 

during reaches has been presented by Barto et al., (1999). 

 

The use of neural maps in models of motor control was pioneered by Ritter et al. (1989) and 

Martinetz et al. (1990). These models used self-organized feature maps (SOFMs) (Kohonen, 

1982) to learn visuomotor coordination. Baraduc et al. (2001) presented a more detailed model 

that used multiple maps to first integrate posture and desired movement direction and then to 

transform this internal representation into a motor command. The maps in this and most 

subsequent models were based on earlier work by Salinas and Abbott (1995, 1996) and Pouget 

and Sejnowski  (1994, 1997). An excellent review of this approach is given by Pouget and 

Snyder (2000). A more recent and comprehensive example of the map-based approach is the 

SURE-REACH (Sensorimotor, Unsupervised, Redundancy-resolving Control Architecture) 

model by Butz et al. (2007) which focuses on exploiting the redundancy inherent in motor 

control (Bernstein, 1967). Unlike many of the other models, which use neutrally implausible 

error-based learning, SURE-REACH relies only on unsupervised and reinforcement learning. 



Maps are also the central feature of a general cognitive architecture called ERA (Epigenetic 

Robotics Architecture) by Morse et al. 

 

Another successful approach to motor control models is based on the use of motor primitives, 

which are used as basis functions in the construction of diverse actions. This approach is inspired 

by the experimental observation of motor synergies as described above. However, most models 

based on primitives implement them non-neurally, as in the case of AVITEWRITE (Paine et al., 

2004). The most systematic model of motor primitives has been developed by Schaal and 

colleagues (Ijspeert et al., 2001, 2003; Schaal et al., 2003, Schaal et al, 2007). In this model, 

motor primitives are specified using differential equations, and are combined after weighting to 

produce different movements. Recently, Matsubara et al. (2011) have shown how the primitives 

in this model can be learned systematically from demonstrations. Drew et al. (2008) proposed a 

conceptual model for the construction of locomotion using motor primitives (synergies) and 

identified the characteristics of such primitives experimentally. A neural model of motor 

primitives based on hierarchical attractor networks has been proposed recently by Byadarhaly et 

al. (2011, 2012) and Byadarhaly and Minai (in press), while Neilson and Neilson (2005, 2010) 

have proposed a model based on coordination among adaptive neural filters.  

 

Motor control models based on primitives can be simpler than those based on trajectory tracking 

because the controller typically needs to choose only the weights (and possibly delays) for the 

primitives rather than specifying details of the trajectory (or forces). Among other things, this 

promises a potential solution to the degrees of freedom problem (Bernstein, 1967) since the 

coordination inherent in the definition of motor primitives reduces the effective degrees of 

freedom in the system. Another way to address the degrees of freedom problem is to use an 

optimal control approach with a specific objective function. Researchers have proposed objective 

functions such as minimum jerk (Flash and Hogan, 1985), minimum torque (Uno et al., 1989), 

minimum acceleration (Ben-Itzhak and Karniel, 2008) or minimum energy (Neilson and Neilson, 

2010), but an especially interesting idea is to optimize the distribution of variability across the 

degrees of freedom in a task-dependent way  (Harris and Wolpert, 1998; Wolpert and 

Ghahramani, 2000; Todorov and Jordan, 2002; Todorov, 2004; Valero-Cuevas et al., 2009). 

From this perspective, motor control trades off variability in task-irrelevant dimensions for 

greater accuracy in task-relevant ones. Thus, rather than specifying a trajectory, the controller 

focuses only on correcting consequential errors. This also explains the experimental observation 

that motor tasks achieve their goals with remarkable accuracy while using highly variable 

trajectories to achieve the same goal. Trainin et al. (2007) have shown that the optimal control 

principle can be used to explain the observed neural coding of movements in the cortex. Biess et 

al. (2007) have proposed a detailed computational model for controlling an arm in 3-dimensional 

space by separating the spatial and temporal components of control. This model is based on 

optimizing energy usage and jerk (Flash and Hogan, 1985), but is not implemented at the neural 

level. 

 

An alternative to these prescriptive and constructivist approaches to motor control is provided by 

models on based on dynamical systems (Haken et al., 1985; Saltzman and Kelso, 1987; Kugler 

and Turvey, 1987; Turvey, 1990; Kelso, 1995; Scholz and Schöner, 1999; Riley and Turvey, 

2002; Riley et al., 2011a). The most important way in which these models diverge from the 

others is in their use of emergence as the central organizational principle of control. In this 



formulation, control programs, structures, primitives, etc., are not preconfigured in the brain-

body system, but emerge under the influence of task and environmental constraints on the 

affordances of the system (Riley et al., 2011a). Thus, the dynamical systems view of motor 

control is fundamentally ecological (Gibson, 1977), and like most ecological models, is specified 

in terms of low-dimensional state dynamics rather than high-dimensional neural processes. 

Interestingly, a correspondence can be made between the dynamical and optimal control models 

through the so called “uncontrolled manifold” concept (Latash et al., 2007, 2010; Scholz and 

Schöner, 1999; Riley et al., 2011a). In both models, the dimensions to be controlled and those 

that are left uncontrolled are decided by external constraints rather than internal prescription, as 

in classical models. 

 

 

 

3. Cognitive Control and Working Memory 

 

A lot of behavior – even in primates – is automatic, or almost so. This corresponds to actions (or 

internal behaviors) so thoroughly embedded in the sensorimotor substrate that they emerge 

effortlessly from it. In contrast, some tasks require significant cognitive effort for one or more 

reason, including: 

 

1. An automatic behavior must be suppressed to allow the correct response to emerge, e.g., 

in the Stroop task (Dehaene et al., 1998). 

 

2. Conflicts between incoming information and/or recalled behaviors must be resolved 

(Botvinick et al., 2004; Botvinick, 2008). 

 

3. More contextual information – e.g., social context – must be taken into account before 

acting. 

 

4. Intermediate pieces of information need to be stored and recalled during the performance 

of the task, e.g., in sequential problem solving. 

 

5. The timing of subtasks within the overall task is complex, e.g., in delayed-response tasks 

or other sequential tasks (Botvinick and Plaut, 2004). 

 

Roughly speaking, the first three fall under the heading of cognitive control, and the latter two of 

working memory. However, because of the functions are intimately linked, the terms are often 

subsumed into each other. 

 

3.1 Action Selection and Reinforcement Learning 

Action selection is arguably the central component of the cognitive control process. As the name 

implies, it involves selectively triggering an action from a repertoire of available ones. While 

action selection is a complex process involving many brain regions, a consensus has emerged 

that the basal ganglia (BG) system plays a central role in its mechanism (Graybiel, 1995; 

Graybiel, 2005; Houk, 2005). The architecture of the BG system and the organization of its 

projections to and from the cortex (Alexander et al., 1986; Middleton and Strick, 2000, 2002) 



make it ideally suited to function as a state-dependent gating system for specific functional 

networks in the cortex. As shown in Figure 3, the hypothesis is that the striatal layer of the BG 

system, receiving input from the cortex, acts as a pattern recognizer for the current cognitive 

state. Its activity inhibits specific parts of the globus pallidus (GPi), leading to disinhibition of 

specific neural assemblies in the cortex – presumably allowing the behavior/action encoded by 

those assemblies to proceed (Graybiel, 1995). The associations between cortical activity patterns 

and behaviors are key to the functioning of the BG as an action selection system, and the 

configuration and modulation of these associations is thought to lie at the core of cognitive 

control. The neurotransmitter dopamine (DA) plays a key role here by serving as a reward signal 

(Schulz et al, 1997; Schulz and Dickinson, 2000; Schulz, 2000) and modulating reinforcement 

learning (Sutton and Barto, 1998; Sutton 1988) in both the BG and the cortex (Montague et al., 

2004; Daw et al., 2005; Frank and O’Reilly, 2006; Gruber et al., 2006). 

 

3.2 Working Memory 

All non-trivial behaviors require task-specific information, including relevant domain knowledge 

and the relative timing of subtasks. These are usually grouped under the function of working 

memory (WM). An influential model of working memory by Baddeley (1986) identifies three 

components in WM: 1) A central executive, responsible for attention, decision-making and 

timing; 2) A phonological loop, responsible for processing incoming auditory information, 

maintaining it in sort-term memory, and rehearsing utterances; and 3) A visuospatial sketchpad, 

responsible for processing and remembering visual information, keeping track of `what’ and 

`where’ information, etc. An episodic buffer to manage relationships between the other three 

components is sometimes included (Baddeley, 2000). Though already rather abstract, this model 

needs even more generalized interpretation in the context of many cognitive tasks that do not 

directly involve visual or auditory data. Working memory function is most closely identified 

with the prefrontal cortex (PFC) (Goldman-Rakic, 1995; Goldman-Rakic et al., 1996; Duncan, 

2001). 

 

Almost all studies of working memory consider only short-term memory, typically on the scale 

of a few seconds (Ratcliff and McKoon, 2008). Indeed, one of the most significant – though 

lately controversial – results in working memory research is the finding that only a small number 

of items can be “kept in mind” at any one time (Miller, 1956; Lisman and Idiart, 1995). 

However, most cognitive tasks require context-dependent repertoires of knowledge and 

behaviors to be enabled collectively over longer periods. For example, a player must continually 

think of chess moves and strategies over the course of a match lasting several hours. The 

configuration of context-dependent repertoires for extended periods has been termed long-term 

working memory (Ericsson and Kintsch, 1995). 

 

 

3.3 Computational Models of Cognitive Control and Working Memory 

Several computational models have been proposed for cognitive control, and most of them share 

common features. The issues addressed by the models include action selection, reinforcement 

learning of appropriate actions, decision-making in choice tasks, task sequencing and timing, 

persistence and capacity in working memory, task switching, sequence learning and the 

configuration of context-appropriate workspaces. Most of the models discussed below are neural 

with a range of biological plausibility. A few important non-neural models are also mentioned. 



                
 

Figure 3: The action selection and reinforcement learning substrate in the basal ganglia. Wide 

filled arrows indicate excitatory projections while wide unfilled arrows represent inhibitory 

projections. Linear arrows indicate generic excitatory and inhibitory connectivity between 

regions. The inverted D-shaped contacts indicate modulatory dopamine connections that are 

crucial to reinforcement learning. Abbreviations: SMA = supplementary motor area; SNc = 

substantia nigra pars compacta; VTA = ventral tegmental area; OFC = orbitofrontal cortex; GPe 

= globus pallidus (external nuclei); GPi = globus pallidus (internal nuclei); STN = subthalamic 

nucleus; D1 = excitatory dopamine receptors; D2 = inhibitory dopamine receptors. The primary 

neurons of GPi are inhibitory and active by default, thus keeping all motor plans in the motor and 

premotor cortices in check. The neurons of the striatum are also inhibitory but usually in an 

inactive “down” state (Wilson, 1995). Particular subgroups of striatal neurons are activated by 

specific patterns of cortical activity (Flaherty and Graybiel, 1994), leading first to disinhibition 

of specific actions via the direct input from striatum to GPi, and then by re-inhibition via the 

input through STN. Thus the system gates the triggering of actions appropriate to current 

cognitive contexts in the cortex. The dopamine input from SNc projects a “reward” signal based 

on limbic system state, allowing desirable context-action pairs to be reinforced (Graybiel, 1998) 

– though other hypotheses also exist (Houk, 2005). The dopamine input to PFC from the VTA 

also signals reward and other task-related contingencies. 

 



A comprehensive model using spiking neurons and incorporating many biological features of the 

BG system has been presented by Humphries et al. (2002, 2006). This model focuses only on the 

BG and explicitly on the dynamics of dopamine modulation. A more abstract but broader model 

of cognitive control is the `agents of the mind’ model by Houk (2005), which incorporates the 

cerebellum as well as the basal ganglia. In this model, the basal ganglia provide the action 

selection function while the cerebellum acts to refine and amplify the choices. A series of 

interrelated models have been developed by O’Reilly, Frank and their colleagues (O’Reilly and 

Munakata, 2000; Frank et al., 2001; Rougier et al., 2005; Hazy et al., 2006; Frank and O’Reilly, 

2006; O’Reilly and Frank, 2006, Frank and Claus, 2006; O’Reilly, 2006). All these models use 

the adaptive gating function of the BG in combination with the working memory (WM) function 

of the prefrontal cortex to explain how executive function can arise without explicit top-down 

control – the so-called `homunculus’ (O’Reilly and Frank, 2006; Hazy et al., 2006). A 

comprehensive review of these and other models of cognitive control is given in O’Reilly et al. 

(2010). Models of goal-directed action mediated by the PFC have also been presented in 

Hasselmo (2005) and Hasselmo and Stern (2006). Reynolds and O’Reilly (2009) have proposed 

a model for configuring hierarchically organized representations in the PFC via reinforcement 

learning. Computational models of cognitive control and working have also been used to explain 

mental pathologies such as schizophrenia (Braver et al., 1999). 

 

An important aspect of cognitive control is switching between tasks at various time-scales 

(Monsell, 2003; Braver et al., 2003). Imamizu et al. (2004) compared two computational models 

of task switching – a mixture-of-experts (MoE) model and MOSAIC – using brain imaging. 

They concluded that task switching in the PFC was more consistent with the MoE model and that 

in the parietal cortex and cerebellum with the MOSAIC model. 

 

An influential abstract model of cognitive control is the interactive activation model by Cooper 

and Shallice (2000, 2006). In this model, learned behavioral schemata contend for activation 

based on task context and cognitive state. While this model captures many phenomenological 

aspects of behavior, it is not explicitly neural. Botvinick and Plaut (2004) present an alternative 

neural model that relies on distributed neural representations and the dynamics of recurrent 

neural networks rather than explicit schemata and contention. Dayan (2006, 2008) has proposed 

a neural model for implementing complex rule-based decision-making where decisions are based 

on sequentially unfolding contexts. A partially neural model of behavior based on the CLARION 

cognitive model has been developed by Helie and Sun (2010). 

 

Recently, Grossberg and Pearson (2008) have presented a comprehensive model of working 

memory called LIST PARSE. In this model, the term `working memory’ is applied narrowly to 

the storage of temporally ordered items, i.e., lists, rather than more broadly to all short-term 

memory. Experimentally observed effects such as recency (better recall of late items in the list) 

and primacy (better recall of early items in the list) are explained by this model, which uses the 

concept of competitive queuing for sequences. This is based on the observation (Averbeck et al., 

2002; Rhodes et al., 2004) that multiple elements of a behavioral sequence are represented in the 

PFC as simultaneously active codes with activation levels representing the temporal order. 

Unlike the WM models discussed in the previous paragraph, the working memory in LIST 

PARSE is embedded within a full cognitive control model with action selection, trajectory 

generation, etc. Many other neural models for chains of actions have also been proposed (Ans, 



1994; Bapi and Levine, 1994; Taylor and Taylor, 2000; Cooper, 2003; Rhodes et al., 2004;  

Nishimoto and Tani, 2004;  Dominey, 2005; Salinas, 2009; Vasa et al., 2010; Chersi et al., 2011; 

Silver et al., 2011). 

 

Higher level cognitive control is characterized by the need to fuse information from multiple 

sensory modalities and memory to make complex decisions. This has led to the idea of a 

cognitive workspace. In the global workspace theory (GWT) developed by Baars (1988), 

information from various sensory, episodic, semantic and motivational sources comes together in 

a global workspace that forms brief, task-specific integrated representations that are broadcast to 

all sub-systems for use in working memory. This model has been implemented computationally 

in the Intelligent Distribution Agent (IDA) model by Franklin (Baars and Franklin, 2003; 

Franklin and Patterson, 2006). A neurally implemented workspace model has been developed by 

Dehaene and colleagues (Dehaene and Changeaux, 1991; Dehaene et al., 1998; Dehaene and 

Naccache, 2001) to explain human subjects’ performance on effortful cognitive tasks (i.e., tasks 

that require suppression of automatic responses), and the basis of consciousness. The 

construction of cognitive workspaces is closely related to the idea of long-term working memory 

(Ericsson and Kintsch, 1995). Unlike short-term working memory, there are few computational 

models for long-term working memory. Neural models seldom cover long periods, and implicitly 

assume that a chaining process through recurrent networks (e.g., Botvinick and Plaut, 2004) can 

maintain internal attention. Iyer et al. (2009, 2010) have proposed an explicitly neurodynamical 

model of this function, where a stable but modulatable pattern of activity called a graded 

attractor is used to selectively bias parts of the cortex in context-dependent fashion. An earlier 

model was proposed by Doboli et al. (2000) to serve a similar function in the hippocampal 

system. 

 

Another class of models focuses primarily on single decisions within a task, and assume an 

underlying stochastic process (Ratcliff, 1978; Ashby, 1983; Busemeyer and Townsend, 1993; 

Ratcliff and McKoon, 2008). Typically, these models address two-choice short-term decisions 

made over a second or two (Ratcliff and McKoon, 2008). The decision process begins with a 

starting point and accumulates information over time resulting in a diffusive (random walk) 

process. When the diffusion reaches one of two boundaries on either side of the starting point, 

the corresponding decision is made. This elegant approach can model such concrete issues as 

decision accuracy, decision time and the distribution of decisions without any reference to the 

underlying neural mechanisms, which is both its chief strength and its primary weakness. Several 

connectionist models have also been developed based on paradigms similar to the diffusion 

approach (McClelland and Rumelhart, 1981; Rumelhart and McClelland, 1982; Usher and 

McClelland, 2001). The neural basis of such models has been discussed in detail by Gold and 

Shadlen (2007). A population-coding neural model that makes Bayesian decisions based on 

cumulative evidence has been described by Beck et al. (2009). 

 

Reinforcement learning (Sutton and Barto, 1998) is widely used in many engineering 

applications, but several models go beyond purely computational use and include details of the 

underlying brain regions and neurophysiology (Montague et al., 2004; Khamassi et al., 2005). 

Excellent reviews of such models are provided by Daw and Doya (2006), Dayan and Niv (2008), 

and Doya (2008). Recently, models have also been proposed to show how dopamine-mediated 



learning could work with spiking neurons (Izhikevich, 2007) and population codes (Urbanczik 

and Senn, 2009).  

 

Computational models that focus on working memory per se (i.e., not on the entire problem of 

cognitive control) have mainly considered how the requirement of selective temporal persistence 

can be met by biologically plausible neural networks (Durstewitz et al., 2000, 2002). Since 

working memories must bridge over temporal durations (e.g., in remembering a cue over a delay 

period), there must be some neural mechanism to allow activity patterns to persist selectively in 

time. A natural candidate for this is attractor dynamics in recurrent neural networks (Hopfied, 

1982; Amit and Brunel, 1995), where the recurrence allows some activity patterns to be 

stabilized by reverberation (Amit and Brunel, 1997). The neurophysiological basis of such 

persistent activity has been studied by Wang (1999). A central feature in many models of 

working memory is the role of dopamine in the PFC (Durstewitz et al., 1999; Brunel and Wang, 

2001, Cohen et al., 2002). In particular, it is believed that dopamine sharpens the response of 

PFC neurons involved in working memory (Servan-Schreiber et al., 1990) and allows for reliable 

storage of timing information in the presence of distractors (Durstewitz et al., 2000). The model 

by Durstewitz et al., (1999, 2000) includes several biophysical details such as the effect of 

dopamine on different ion channels and its differential modulation of various receptors. More 

abstract neural models for working memory have been proposed by Hochreiter and Schmidhuber 

(1997) and Moody et al., (1998). 

 

An especially interesting type of attractor network uses so-called bump attractors – spatially 

localized patterns of activity stabilized by local network connectivity and global competition 

(Hahnloser et al., 1999). Such a network has been used in a biologically plausible model of 

working memory in the PFC by Compte et al. (2000), which demonstrates that the memory is 

robust against distracting stimuli. A similar conclusion is drawn by Gruber et al. (2006) based on 

another bump attractor model of working memory. They show that dopamine in the PFC can 

provide robustness against distractors, but robustness against internal noise is achieved only 

when dopamine in the BG locks the state of the striatum. Recently, Mongillo et al., (2008) have 

proposed the novel hypothesis that the persistence of neural activity in working memory may be 

due to calcium-mediated facilitation rather than reverberation through recurrent connectivity. 

 

 

4. Conclusion 

 

This chapter has attempted to provide an overview of neurocomputational models for cognitive 

control, working memory, and motor control. Given the vast body of both experimental and 

computational research in these areas, the review is necessarily incomplete, though every attempt 

has been made to highlights the major issues, and to provide the reader with a rich array of 

references covering the breadth of each area.  

 

The models described in this chapter relate to several other mental functions including 

sensorimotor integration, memory, semantic cognition, etc., as well as to areas of engineering 

such as robotics and agent systems. However, these links are largely excluded from the chapter – 

in part for brevity, but mainly because most of them are covered elsewhere in this Handbook. 
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