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Abstract

Recently, it has been suggested that attractor networks may provide a mechanism for
context-dependence in hippocampal place codes. We have proposed that context may be coded
by `latent attractorsa * mutually competitive and internally cooperative cell groups which
channel the system's response to a!erent stimuli. We have also argued that it is the disynapti-
cally recurrent dentate gyrus}hilus (DGH) system which embodies these latent attractors in the
hippocampus. Others have suggested the CA3 network * with its monosynaptic recurrence
* is the site. While latent attractors (and, thus, context-dependent coding) can be implemented
by a 1-layer or 2-layer recurrent network, we show that a 2-layer recurrent network can
implement a sparse context-dependent place-code using latent attractors much more #exibly
than a 1-layer network. � 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and background

Recently, there has been considerable interest in the issue of hippocampal CA3
spatial representations in di!erent contexts or frames of reference, and it has been
suggested that attractor networks may provide a mechanism for context-dependence
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[15,11,5]. The model we have proposed is based on the notion of `latent attractorsa
* groups of cells which tend to activate each other and inhibit cells in other groups,
but which do not all "re at the same time. Thus, activity across the system is
channelled into one of the groups in a metastable fashion. Cells in this group then
become the only ones that respond to a!erent input, creating a context-dependent
representation with the selected cell group identifying the context [11,3}5]. We have
shown through simulation [4,5] that latent attractors require only a very simple type
of recurrent connectivity. Samsonovich and McNaughton [15] have proposed a
qualitatively similar but more sophisticated scheme based on the `chartsa hypothesis.
However, this scheme requires a more complex pattern of recurrent connectivity
(Recently, Samsonovich (unpublished) has proposed a simpler model closer to ours.)

One major issue in all this is the architecture of the underlying network.
Samsonovich and McNaughton [15] have tentatively located the charts system in the
CA3 * a 1-layer system with monosynaptic excitatory recurrence. In contrast, we
have suggested [11,3}5] that the attractors are coded in the 2-layer dentate
gyrus}hilus system, using the disynaptic recurrent connectivity between granule and
mossy cells. In this paper, we address the issue of whether a 2-layer system has
any advantage over a 1-layer system in supporting the appropriate type of place
representations.

2. Theoretical issues

We have previously argued on the basis of known experimental results and
anatomical considerations why the dentate gyrus}hilus (DGH) system is a likelier
locus for latent attractors or charts than the CA3 [11,3}5]. In this paper, we focus on
a more abstract question that goes to rather general issues in neural computation.

Most theoretical models of hippocampal function (Marr, 1971; [10,18,2,17,
15,13,7}9] hypothesize that the CA3 system serves as an associative memory for
patterns or pattern sequences. In the rodent, such patterns can be seen as representa-
tions of place [19]. Two key requirements can be listed for these codes:

1. Sparseness: Successful storage of patterns in a recurrent network requires sparse
coding [10,14]. Indeed, creating sparse codes for CA3 has been posited as the
primary function of the dentate gyrus [10,14,18].

2. Spatial Consistency: Place codes must vary smoothly in space such that similarity in
code re#ects spatial proximity. At the same time, codes for distinguishable loca-
tions must be distinct. These requirements are met if the place code is correlated
with a!erent sensory input, which varies smoothly in space.

We argue that meeting these requirements while simultaneously maintaining a latent
attractor is much easier for a 2-layer network than a 1-layer system.

We assume that, at time, t, the system is subject to two stimuli: The a!erent sensory
stimulus, s(t), and the recurrent stimulus, r(t), which re#ects the system's own previous
state, x(t!1) (in a discrete-time formulation). The actual activity of the system's
active primary cells must code the a!erent information, s(t). However, given a certain
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magnitude of s(t), the recurrent signal, r(t) must have the minimum strength needed to
con"ne activity within the cells of the appropriate latent attractor. Assuming that the
recurrent connectivity of the system is "xed, there are two ways to achieve this
strength: (1) Via a signi"cant number of moderately strong active recurrent inputs, or
(2) Via a small number of very strong active recurrent inputs. If the recurrent activity
pattern is constrained to be sparse, only option (2) is available. However, this means
that the net recurrent bias on cells within the attractor at time t#1 due to activity at
time t has a high variance. This, in turn, makes the activity of cells at time t#1 much
more dependent on the precise activity pattern at t, and, correspondingly, less
informative about the a!erent stimulus.

The key problem is that sparse patterns acting through sparse connections are not
a good substrate for generating uniform biasing "elds, which is precisely what
the latent attractor scheme needs. However, good coding requires sparseness,
thus creating a con#ict. A 2-layer system can resolve this con#ict because it has two
extra degrees of freedom: Two instead of one set of connections in the recurrent path,
and two instead of one level of activity (one in each layer). Thus, the layer whose
output constitutes the system response (DG in our model), can have sparse activity
and a sparse downstream projection, while the other layer, which acts only to bias the
"rst, can have higher activity and a more di!use projection to the "rst layer.
This separation of the information carrying and biasing functions into two layers
creates a much more #exible system than one which must operate within a narrow
critical range of activity and connectivity needed to satisfy the requirements of both
functions.

Interestingly, several features of the DGH system conform to our theoretical
requirements: (1) The granule cells are very hard to "re and have low spontaneous
activity [6]; (2) Granule cell axons (mossy "bers) project very sparsely [1]; (3) Mossy
cells are very easy to "re [16]; (4) The projection from mossy cells to granule cells is
highly divergent and relatively di!use [16]. This is a system ideally con"gured to
produce sparse place codes for storage in CA3.

3. Simulations and results

We simulated the environment as an ¸�¸ grid on which the simulated animal
moves randomly. The 2-layer network has two functional layers * A and B, which
can be seen as the DG and hilus, respectively* and an input layer, I, which can be
seen as the entorhinal cortex. The I layer is modeled at a purely phenomenological
level: Each cell is given a broad, noisy Gaussian place "eld with a randomly chosen
center and random shape and orientation. As the animal moves on the grid, each
I cell's activity just re#ects its place "eld.

The A layer receives excitatory input from I and focused excitatory as well as global
inhibitory input from B. A-layer cells, which are modeled as discrete-time threshold
units, are "red by a K-of-N rule simulating competitive "ring. Since the input from
B represents a feedback, it has a delay of one time step. B layer neurons are also
modeled as simple threshold units with competitive "ring.
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Fig. 1. Stability and quality of coding in 2-layer (left) and 1-layer (right) networks.

M cell groups are chosen from both the A and B excitatory cells, with no
restrictions on overlaps. All groups in the same layer are of identical size. A-to-B and
B-to-A cell connectivity is uniform random with a "xed probability of connection.
Cell groups are implemented by setting all existing cross-group connections to low
values and all within-group connections to high values.

The one-layer network is constructed as above, but with the A layer projecting
directly to itself.

As the simulated animal traverses the environment, the activity of A cells represents
a place code for the animal's current position, and active A cells exhibit place "elds
[5]. The "rst stimulus, s(0), through a competitive process (due to the system connect-
ivity), con"nes future activity within one A group (latent attractor), with cells in other
groups "ring only sporadically.

The architecture of the system as well as group size are "xed for all simulations. The
strength of the input from I to A is also "xed, as is the activity level in layer B for the
2-layer system. However, the recurrent gain, G, is left as a potentially variable
parameter (see below). The sparseness parameter, q"K/N * the number of active
A cells as a fraction of group size* is used as the independent variable. The system's
performance is evaluated by two criteria:

1. Stability of the latent attractor, measured by the probability, P, of being in the
correct group during steps 100 to 110 of a simulation.

2. Spatial consistency of the DG place codes, i.e., the coherence between pairwise
similarity of place codes and spatial proximity of the corresponding sites. We
measure it by using Kendall's tau (�) [12].

Fig. 1 plots the composite P�� in G!q space. It shows that it is possible to
retain both high P and � only in a narrow range within q!G space for the 1-layer
network. In the 2-layer network, however, a high value of P�� can be obtained over
a wide area of q!G space, indicating the robustness and #exibility of the 2-layer
network.
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4. Conclusion

Simulations done using reasonable connectivity parameters for 1- and 2-layer
networks show that a DG-hilus-like 2-layer system can support sparse context-
dependent place codes much more #exibly than a CA3-like 1-layer network. This does
not, of course, preclude the existence of latent attractor dynamics in the CA3, but
provides a compelling argument for the DG-hilus system as its primary locus.
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