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An attractor model for hippocampal place cell hysteresis
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Abstract

It is well-known that identical sensory input under di!erent perceptual, behavioral or
contextual conditions can produce distinct patterns of activity in the place cells of the rodent
hippocampus. However, the mechanisms underlying this have not been completely clari"ed.
A recent experiment has shown that place cell activity on a 3-armmaze exhibits hysteresis as the
maze is rotated with respect to distal cues. The apparent angular extent of a place "eld is greater
when a maze arm rotates out of it than when it rotates back into the "eld. In this report, we
present a simple attractor-based model of the hippocampus that reproduces this hysteresis
phenomenon. The model allows us to make predictions about changes in the hysteresis e!ect as
the animal becomes more familiar with the maze in several orientations. It also has implications
for the place "eld remapping phenomenon seen in many hippocampal experiments. � 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction and background

Primary cells in the rodent hippocampus show place dependent "ring, with the
region of high activity called a place "eld. Extensive experimental studies have shown
that hippocampal place representations depend in a complex fashion on external,
vestibular, motivational, behavioral and contextual cues [5,16,9,3,17,7,1]. In some
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Fig. 1. (a) Maze con"guration; (b,c) example of place "eld hysteresis: (b) clockwise rotation, (c) counter-
clockwise rotation.

instances, identical sensory situations can generate distinct representations in the
same environment [13], where either the perception of the animal or the context play
a role. Other non-linear e!ects can also arise, e.g. dissociation of the external and
vestibular sensory cues produce di!erent results, depending on the magnitude of
discrepancy between the two [6,13,15]. Several computational models have addressed
these issues. These include reference frames [10], charts [14], and latent attractors
[8,4]. However, the large range of experimental results is very di$cult to explain with
any single theory, probably because multiple mechanisms are at work. In this paper
we present a computationalmodel of the rodent hippocampus aimed at explaining the
process underlying a very recent experimental result [12] showing a non-linear
hysteresis phenomenon in place cell activity. This e!ect is in line with previous
predictions of our model of the hippocampus for context-dependence [8,4], and
constitutes further evidence of the presence and e!ect of attractors in the
hippocampus.

2. Experimental results

The experimental apparatus [12] consists of a 3-arm maze (Y maze, Fig. 1(a)),
surrounded by rich distal cues in the recording room. The rat's task is to run
for food at the end of each arm in a non-repetitive manner. During recordings
from CA3/CA1 cells, the maze is rotated slowly in eight increments of 153 clock-
wise until it is again in the initial position, but with di!erent arms. After a short
break for the rat, the maze is rotated back counterclockwise in the same eight
increments. Initially, and after each rotation, the rat is allowed to sample each arm at
least four times so that reasonable place "eld estimates are obtained. The primary
result is that place "elds recorded in the initial orientation show greater angular extent
when the maze rotates out of them than when it rotates back in (Fig. 1(b) and (c)).
Thus, the place "elds show spatial hysteresis. An interesting aspect of this result is
that, in the region of hysteresis, identical positions (i.e. visual information) produce
di!erent place activity depending on the direction of maze rotation. This o!ers further
evidence that place cell activity is not determined solely by external sensory informa-
tion, but, in this case, also by recent experience, suggesting the presence of attractor
dynamics in the system.
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3. Theoretical model

Our model explains the hysteresis e!ect through attractors supported by the
recurrent connections of the CA3 region which can undergo potentiation as the
animal experiences new maze orientations. Thus, when the rat learns the Y maze task
in the initial orientation, cells that "re together or within short intervals acquire
stronger interconnections than cells that "re far apart in time and space, setting up
a series of continuous attractors over the maze [2,14,10,11]. However, the inertial
e!ect of this is masked by the external sensory input which updates place cell activity
as the animal moves around.
Consider the maze in the original position (03 rotation), and designate the attractors

on Arm A as A
�
. The active group in A

�
comprises place cells with centers on Arm

A in the starting orientation. When the maze is "rst rotated 153 clockwise, there is
competition for "ring between cells of A

�
*with strong recurrent connections but

slightly reduced external sensory input*and cells with centers in the new position of
the maze that receive high sensory input but have not yet developed strong recurrent
connections because they have not experienced this situation before. The slight
advantage for the latter group in terms of external stimulus is overcome by the
recurrent advantage of the original cells, and "ring in the 153 position remains
con"ned mostly to A

�
. When the maze is rotated further into the 303 position, the

situation changes, and the attractor dynamics of the original place cells cannot make
up for their now seriously reduced sensory drive. Thus, new place cells with centers
near the 303 position of the arms become active and the place "elds active in the
original orientation disappear. Synaptic potentiation now occurs in the recurrent
connections between the newly active cells, creating a new attractor, A

��
, in the new

position.When the maze is rotated back counterclockwise from the 303 position to the
153 position, it is A

��
which persists because of attractor dynamics. Then, when the

position returns to 03, the cells of A
�
reassert themselves, and the original starting

con"guration in recovered. Thus, while place activity in the 03 and 303 positions is
consistent during clockwise and counterclockwise rotation, the cells active in the 153
position are A

�
cells during clockwise rotation and A

��
cells during counterclockwise

rotation. This is precisely the hysteresis e!ect seen experimentally. In terms ofA
�
cells,

it looks as though they "re at 153 as the maze moves out of their "elds (clockwise), but
not when the maze moves back in (counterclockwise) (see Fig. 1(b) and (c)).
The angles of rotation used in the discussion above are for illustration only, and do

not carry any particular biological or behavioral signi"cance. In both experiment and
simulation, the observed hysteresis is gradual, with place cells decreasing their activity
over 303 or even more rather than switching o! abruptly.

4. Simulation and results

The model used to simulate the hysteresis e!ect consists of a single layer ofN
�
place

cells (as in the CA3). Place "eld centers, c
�
, are uniformly distributed on a circular area

with a radius equal to the maze radius, R
�
. Distal cues are represented by
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N
�
landmarks, ¸

�
, characterized by their position, distributed uniformly along the

circular wall of the simulated room of radius R
�
. The following parameter values are

used in simulation: R
�

"20, R
�
"40, N

�
"12, and N

�
"484.

Each cell receives external input as well as recurrent stimulus from other place cells.
The external sensory input comes from the distal cues, with each cell responding to
a random number of landmarks (between l

���
and l

��	
) chosen from the most n

�
cues

closest to its "eld center. Thus, the external input to cell i is

h
	�
�
(t)"exp�!

���	 ���
�

������ ���

w
�

[d(p(t),¸
�
)!d(c

�
,¸

�
)]�

2��

	�

�, (1)

where w
�
3[0, 1] encodes the signi"cance of landmark k, d(p(t),¸

�
) is the distance

between the animal's position at time t and the landmark, d(c
�
,¸

�
) is the distance

between the cell center and the landmark, and ��

	�
parameterizes the width of the "eld.

The recurrent connections between cells are chosen randomly with probability of
connection p

�
. The weight from cell j to cell i is set as: w

��
"g exp(!(d(c

�
, c

�
)/(2��

�
))),

where d(c
�
, c

�
) is the distance between the "eld centers of i and j, and g is a gain

parameter distributed uniformly in an interval. For connections between cells with
centers on the initial position of the maze, the interval for g is close to 1 (i.e. the
attractors are stronger due to the rat's familiarity with this position), while for other
connections, g is distributed closer to 0, since those cells have never "red together. The
total input to a cell is formed by the sum of external and recurrent components.
The neuron output is binary, with a competitive updating rule that "res theKmost

active neurons, whereK represents a small fraction (2%) of the size of the network. As
the simulated rat moves on the maze, a Hebbian learning rule updates the weights,
such that, as the maze rotates, attractors outside the maze are formed and strengthen:
�w

��
"� exp(!(d(c

�
, c

�
)/(2��

�
))), with � the learning rate. Because no forgetting is

included in this simple rule, a maximum upper bound is imposed on the weight values.
Also, the weights are increased faster (�"0.4) for cells with centers outside the
familiar position of the maze, as compared with the rest of the cells (�"0.03). This
simulates the e!ect of synaptic saturation, with a slower learning rate for already
potentiated synapses.
Fig. 2 shows how the mean spatial "ring rate of cells with centers on the initial

position of the maze arms varies with the rotation angle. The hysteresis phenomenon
can be seen in two cases, corresponding to Fig. 1(b) and (c). First, when the maze is
rotated clockwise the place cells "re for larger angular extent that when the maze
comes back (Fig. 2 (right side)). Second, as Arm C moves into the original position of
Arm A (1203 rotation), cells "re later than when it is rotated out (Fig. 2 (left side)).
Fig. 3 shows the place "eld of a cell situated on Arm B, as the maze is rotated in

both directions. The place "elds on the "rst row correspond to the "rst four rotations
of the maze during clockwise rotation (B

�
, B

�	
, B

��
, B


	
). The cell "res on the "rst

three positions, though the place "eld shrinks, and the overall mean "ring rate
decreases. The bottom "gures (Fig. 3(e}h)) show the place "eld as the maze is rotated
counterclockwise through the same positions (B

��	
, B

�
�
, B

���	
, B

����
). The cell

starts "ring only at B
���	

, and becomes fully active only at B
����

.
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Fig. 2. Dependence of place cell spatial "ring rate with rotation angle (�): (�, solid line) clockwise rotation,
and (�, dashed line) counterclockwise rotation. Each point represents the normalized mean "ring rate over
all possible locations of all cells that had place centers on the 03 position of the maze arms. The
normalization factor is the mean spatial "ring rate at 03maze position, at the start of the clockwise rotation.

Fig. 3. Place "eld hysteresis: (a}d) clockwise rotation: (a) 03, (b) 153, (c) 303, (d) 453; (e}h) counterclockwise
rotation: (e) !753, (f ) !903, (g) !1053, (h) !1203.

5. Conclusions and discussion

The scenario outlined above has implications for the dynamics of cognitive maps in
changing environments. Many hippocampal theories ([10,11,14,8,4]) are based on the
existence of attractors or maps for each distinctively perceived environment, formed
by currently active place cells. The framework we describe allows us to generate
testable hypotheses about the plasticity of these attractors. For example, if plasticity in
the recurrent connections between place cells involves depotentiation (forgetting) as
well as potentiation, the hysteresis e!ect would show a strong dependence on the
timing and duration of the maze rotation episodes, but would persist almost unaltered
as the animal is tested over long periods.
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We have shown how a simple attractor model of the rodent hippocampus is able to
emulate a nonlinear, hysteresis e!ect seen experimentally in place cells recordings. The
model also enables us to better understand the mechanisms that may underlie
hippocampal place representations.
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