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Abstract— Ad-hoc sensor networks comprising large num-
bers of randomly deployed wireless sensors have recently been
an active focus of investigation. These networks require self-
organized configuration after deployment, and ad-hoc heuristic
methods for such configuration have been proposed with regard
to many aspects of the networks’ performance. However,
systematic approaches for such configuration remain elusive.
In this paper, we present a preliminary attempt towards such a
systematic approach using evolutionary algorithms and reverse
engineering. In particular, we focus on the problem of obtaining
heterogeneous networks that optimize global functional prop-
erties through local adaptive rules. Almost all work on ad-
hoc sensor network has so far involved homogeneous networks
where all nodes transmit with the same power level, creating a
symmetric connectivity. It is possible to construct heterogeneous
networks by allowing nodes to transmit at different power
levels, and such networks are known to provide improvements
in network lifetime, power efficiency, routing, etc. However,
such networks are difficult to build mainly because the optimal
power level for each node depends on the node location and
spatial context, which are not known before deployment. A few
heuristic schemes focused on improving power consumption
have been proposed in the literature, but the issue has not been
investigated sufficiently at a general level. In this paper, we
present a new and improved heuristic developed using a reverse
engineered approach. A genetic algorithm is used to generate
a set of heterogeneous sensor networks that are characterized
by low short paths and minimal congestion. Analysis of this
optimal network set yields rules that form the basis for a local
heuristic. We show that networks adapted using this heuristic
produce significant improvement over the homogeneous case.
More importantly, the results validate the utility of the proposed
approach that can be used in other self-organizing systems.

I. INTRODUCTION

The growing capabilities and miniaturization of wireless
devices over the past decade has fuelled increased research
interest in wireless networks. One of the most active research
areas in this regard has been that of ad-hoc sensor networks.
These networks comprise large numbers of wireless sensor
nodes deployed randomly over an extended region, and then
required to configure themselves into an ad-hoc network for
applications such as event-monitoring, guidance and intru-
sion detection [1]. Because of their random structure, large
extent and low node power, in-field configuration of these
networks typically involves some variant of self-organization
— obtaining global structure through local adaptive rules —
making them an attractive model system for research on self-
organization.
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A. Background and Motivation

Most research on ad-hoc sensor networks has focused on
homogeneous networks where all nodes transmit signals with
the same power. Since the nodes are assumed to be identical,
transmission power determines the range over which each
node’s signal can be detected by others, giving an identical
transmission radius for each node and creating a symmetric
network (except for inhomogeneities caused by obstructions,
etc., which are usually ignored). This simplifies the analysis
of network performance, e.g., using the tools of percolation
theory [2] and random graphs [3]. It also makes the design
of configuration protocols easier by directly relating connec-
tivity to node density, eliminating the need for individual
nodes to choose their transmission power. However, as in
all distributed systems, optimal configurations are likely to
be highly heterogeneous [4]–[7], and the homogeneity of
current models is driven more by computational expediency
than by performance goals [8], [9]. This has been verified
by research showing that heterogeneous networks where
nodes use different transmission power levels have lower
power consumption [10], [11]. Since sensor nodes are limited
power devices, conservation of power typically prolongs the
network lifetime [12]. Heterogeneity in sensor networks also
provides better routing schemes [13], [14], and is likely to
reduce channel congestion by allowing many — even most
— nodes to have smaller communication radii.

In spite of the fact that heterogeneous networks are more
efficient than their homogeneous counterparts, their utility is
limited by the difficulty of configuration. In most applications
of large scale sensor networks, the actual or relative location
of the sensors cannot be determined before their deployment.
Thus, each node must determine its transmission radius after
deployment using information obtained in the field. The
transmission radii of nodes in a heterogeneous network affect
network connectivity, lifetime and robustness, which are all
global properties that can be optimized. However, each node
must base its decisions only on local information in order
to keep the configuration process scalable. Thus, the central
question for this system is: How can each node determine
its transmission power using local information such that
certain global properties of the network are optimized? This
is an instance of a fundamental issue faced by all self-
organizing systems such as swarms, multi-agent systems,
etc., where individual components must adapt parameters
of choice based on limited local information while seeking
to optimize global performance. Discovering general rules
for such choices is extremely difficult, often leading to the



use of ad-hoc heuristic rules based on intuitive analysis and
subsequent fine tuning. The goal in the work presented here is
to propose a more systematic, knowledge-discovery oriented
approach that begins to address this issue. From the applica-
tion viewpoint, the work extends our earlier results [15] on
a heuristic that allows each node to choose its transmission
radius to optimize for mean shortest path length (MSPL) and
congestion in the network as a whole. Minimizing MSPL
reduces the overhead of multi-hop communication. MSPL
alone is clearly minimized by allowing maximal transmission
power, but this also increases congestion. Optimizing both
MSPL and congestion together leads to a network where
communication overhead is minimized and is evenly distrib-
uted throughout the network.

While there is a large body of work on “evolving net-
works”, most of it refers simply to networks with dynamic
structure rather than actual evolutionary optimization. How-
ever, such optimization has been applied extensively in the
areas of neural networks [16]–[18], gene regulation networks
[19]–[24] and metabolic networks [5], [6]. Evolutionary algo-
rithms are usually considered too slow for problems requiring
real-time self-organization without multiple trials, such as
configuration of sensor networks, but these algorithms can
play an extremely important role in developing the self-
organization algorithms themselves. This, after all, is exactly
the function evolution serves in the biological context (e.g.,
optimizing developmental programs). In this work, we use
evolutionary algorithms in a more limited design context:
Providing optimal solutions from which desirable system
features can be extracted by knowledge discovery. The larger
project of optimizing self-organization rules through evolu-
tion is also underway.

The organization of the paper is as follows. In the fol-
lowing section the network model, optimization strategy
followed and other details from our earlier work are ex-
plained. Section III describes the radius heuristic in detail.
The simulation results and analysis are provided in Section
IV. The conclusions and possible future work are discussed
in Section V.

II. DESCRIPTION OF APPROACH

The primary difficulty in systematically obtaining local
rules for global self-organization is that the relationship
between local features that can be directly addressed by
some rules and the corresponding global properties being
optimized are not available. The system is too complex to
be analyzed tractably except under simplifying assumptions
such as uniform transmission radius, which renders the
exercise moot. We attempt to circumvent this problem by
adopting a reverse engineering approach that works by first
trying to obtain optimal configurations in a broad population
of systems using a global search method and then mining
these configurations to determine their useful features. This
is described below.

A. Network Model

The network is modeled as a unit square where n sensor
nodes are distributed in a uniform random fashion with
density λ. Each node is able to choose its operating trans-
mission radius from the range [rmin, rmax]. For simplicity,
we only allow nodes to choose transmission radii from a set
of discrete values, R = {rmin, r2, r3, . . . , rmax}. The values
for rmin and rmax for the heterogeneous sensor network
are chosen such that, if rperc is the percolation radius [2],
[25] of the corresponding homogeneous network, then rmin

is less than rperc and rperc is one of the possible choices
for node radius from the set R. The homogeneous network
used to compare performance has all its radii set to rperc

to ensure connectivity. The expectation is that, in optimal
heterogeneous networks, many nodes will be able to use radii
lower than rperc because a few nodes with large radii can
compensate to maintain connectivity.

It is assumed that each node knows its global location, and
that protocols exist to allow reliable communication. These
protocols are not the object of our study and are not simulated
explicitly.

B. Optimization Strategy

The general strategy used to discover local features of
optimal networks and to obtain local adaptive rules involves
the following steps:

1) A configuration space and a fitness (objective) function
are defined for the class of networks considered.

2) A large number of random node distributions are
generated and an evolutionary algorithm is used to
obtain (possibly multiple) optimal (or near-optimal)
node radius configurations for each node distribution.
The resulting set of optimal network configurations
is termed the optimal network set (ONS) and is used
for feature mining. Multiple runs, random mutational
shocks and local search are used to ensure that the
configurations obtained can reasonably be considered
near-optimal.

3) The optimal configurations are analyzed to identify
properties that differentiate them from surrogate non-
optimal configurations with the same radius statistics.

4) Based on the results, local rules are developed that al-
low a node to make decisions leading to networks with
features similar to the evolved optimal configurations.

5) Finally, the rules are implemented and the performance
of the resulting network is compared with that of
networks obtained using the evolutionary algorithm.

C. Generation and Analysis of the Optimal Network Set

For our specific problem, we used the approach described
above to optimize MSPL and congestion in networks. The
MSPL, Mj , of a given network, j, was computed as the
average of the lengths of the shortest paths between all pairs
of nodes in the network. Congestion, Cj , was modeled as the
mean in-degree of all nodes in the network. The evolutionary
algorithm (EA) coded the network as an ordered vector of
the transmission radii of its nodes. This vector formed the
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Fig. 1. Mean Radius Distribution of GA networks with error bars

network’s chromosome. The fitness function of the network
was taken to be φj = (MjCj)−1. Initial candidate networks
were built by assigning each node a uniformly randomly
chosen radius from the range [rmin, rmax].The candidate
networks for the next generation were obtained by crossing
over chromosomes of parent networks from the current
generation. Selection for both mating and survival was
stochastically elitist, with a fraction of the fittest networks
guaranteed selection (the parameters varied between runs
because the goal was to obtain the best networks rather
than systematically studying the the evolutionary algorithm.)
Each trial was run until a stable, reliable maximum was
obtained, but at least for 500 generations. The resulting
optimal networks formed the ONS.

Analysis of the ONS to obtain useful features is largely an
inductive process which, for this study, was still done mostly
by informed trial-and-error. A more automated approach is
being developed and will be reported in the future. The
analysis comprised two steps:

1) The statistical distribution of radii for ONS members
was studied and was found to show a characteristic
pattern. Most nodes had radii between rmin and rperc,
while a few key nodes had large radii (see Figure 1).
This architecture is somewhat reminiscent of the hub-
based configurations studied in the scale-free networks
literature [26], [27]. These results provided the princi-
ple that small radii could be considered the default
in optimal networks, with a few well-chosen nodes
given large radii, i.e., what was needed was a bimodal
heterogeneity. Interestingly, several researchers have
recently obtained similar results in random networks
with non-geometric (non-local) connectivity [28], [29].
The issue, of course, is to identify the large-radius
nodes based on local features.

2) Next, the radius values for nodes in each optimal con-
figuration were correlated with several local properties
of the node’s neighborhood configuration. It was found
that the radius value chosen by a node j was linked to
two local properties: A) The density, N j , of neighbors

within close proximity of j, and B) The the maximum
separation, dj , among nodes within j’s transmission
radius. These two properties A and B were then used
to obtain the local rules for adaptation as described
below.

III. THE RADIUS HEURISTIC

Let R = {rmin = r1, r2, . . . , rn = rmax} denote the
set of n different radius values that can be chosen by a
node. The maximum neighborhood of a node j consists of
all nodes reachable from j along with their relative positions
when j has the maximum transmission radius rmax. Since the
strategy is to optimize global fitness, φj , by having each node
choose its radius using properties A and B, define a local
fitness measure for each node in terms of these properties.
Each node j computes this fitness measure, f j

i , for each value
ri ∈ R, i = 1, 2, ..., n, and chooses its transmission radius
rj = ri∗ such that f j

i∗ ≥ f j
i , i = 1, 2, ..., n.

The fitness measure f j
i for a given radius value ri is the

sum of two components:
1) Base fitness measure, bj

i .
2) Gain fitness measure,gj

i .
Both fitness components are a function of the transmission

radius being considered by the node. Intuitively, the base
fitness captures the quality of the node at that radius while
the gain fitness indicates whether this quality is dispropor-
tionately better than that at the best available lower radius.

The base fitness, bj
i , of node j for a radius ri, is the sum

of two components bNj

i and bdj

i . The first component, bNj

i is
the ratio of number of neighbors of the node j at this radius,
N j

i , to the expected number of neighbors of j. The expected
number of neighbors of a node j depends on the radius ri

and the node density, λ. The second component bdj

i is the
maximum neighbor separation dj

i at the radius ri normalized
by the diameter. Thus,

bj
i = bNj

i + bdj

i

bNj

i =
N j

i

(π(ri)2λ) − 1
, bdj

i =
dj

i

2ri

The gain fitness, gj
i , of node j is computed only for radius

values ri > r1 and again is the sum of two individual compo-
nents: gNj

i and gdj

i . The first component, gNj

i , is the increase
in the number of neighbors expressed as a percentage of
the expected increase in the number of neighbors between
radii ri−1 and ri. The expected increase in the number
of neighbors is given by π[(ri)2 − (ri−1)2]λ. The second
component, gdj

i is computed only if there is an increase in
the maximum neighbor separation after increasing the radius
from ri−1 to ri. It is computed as the percentage increase
in the maximum neighbor separation at radius ri compared
to the previous radius ri−1 with respect to the increase in
diameter which is 2(ri − ri−1). Thus,

gj
i = gNj

i + gdj

i

gNj

i =
(N j

i − N j
i−1) − π[(ri)2 − (ri−1)2]λ

π[(ri)2 − (ri−1)2]λ



gdj

i =

{
(dj

i−dj
i−1)−2(ri−ri−1)

2(ri−ri−1)
, if dj

i > dj
i−1

0 , else.

A. Heuristic Implementation

The heuristic rule used by each node is described be-
low. It uses only local information obtained by each node
through local messages. All nodes make their initial choices
autonomously, followed by a coordination step to improve
performance as described in the next section.

1) Each sensor node j, after deployment, obtains informa-
tion on the nodes in its rmax-neighborhood and their
relative positions by means of “hello” messages.

2) The current radius index variable, α, is set to 1.
3) The number of neighbors, N j

α, and the maximum
separation among the neighbors, dj

α, for radius rα

are determined. The node then computes the fitness
measure f j

rα
for radius rα. If α = 1, this consists of

just the base fitness measure.
4) The next radius index value, β, is set as α + 1. The

number of neighbors, N j
β , and the maximum separation

among the neighbors, dj
β , for radius rβ are determined.

5) If there is no increase in the number of neighbors
at radius rβ compared to radius value rα, then rβ

is dropped from the set of possible radius values for
node j and the total number of radius values, n, is
decremented.

6) In case there is an increase in the number of neighbors
with the increase in radius, the gain fitness value gj

β

is calculated for rj
β as described earlier, and α is

incremented by 1.
7) The base fitness bj

β and the final fitness value, f j
β =

bj
β + gj

β is calculated.
8) If α < n, the process is repeated from Step 4. Else, the

radius ri∗ with the highest fitness value f j
i∗ is chosen

as the operating radius by node j.

The logic of the heuristic is simple — the base fitness
measures how good a radius value, in itself, is for a node
and mainly contributes to the selection of smaller radius
values. The gain fitness measure is used to quantify the
advantage/disadvantage of increased radius value. It must
be noted that the gain fitness value can be negative thus
decreasing the overall fitness of certain high radius choices
for a node. This helps ensure that a large radius is chosen
only in cases where it would be beneficial.

B. Improving the Heuristic

It was found through simulations (discussed in detail in the
next section) that the networks obtained using the heuristic,
while giving MSPL and mean node radius comparable with
the evolved optimal networks in the ONS, were extremely
congested. The source of additional congestion in heuristic
networks is understood from the comparison of the radius
distribution in the ONS networks and heuristic networks.

Figures 2 and 3 and show the distribution of radii in the
evolved and heuristically organized networks respectively for
a particular node layout. It is clearly seen that in the case
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Fig. 3. Radius Distribution of Heuristic networks

of heuristic networks, more nodes have radius values that
are in the middle of the possible range of values. Since the
heuristic is necessarily local and node-centered, congestion
minimization does not enter it explicitly as it does in the
fitness function for the evolutionary algorithm. Thus, some
localized coordination among nodes is necessary to reduce
congestion. One possible strategy for this is to reduce the
radius of those nodes in the intermediate range that will not
cause a drastic change in the MSPL of the network. We have
developed a collaboration mechanism based on this and show
that it improves the fitness of the heuristic networks.

C. The Collaboration Step

Once all the nodes have been deployed and have selected
an operating radius based on the heuristic detailed earlier,
the nodes enter into a second collaboration step. In this
collaboration step, each node j communicates its chosen
operating radius to other nodes within its minimum radius
rmin. Once a node has received information regarding the
chosen operating radii of all its minimum radius neighbors,
it makes a decision on whether to reduce its radius or not.

The decision on reducing the operating radius is governed
by the following rules.
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Fig. 4. Radius Distribution of C-Heuristic networks

1) Only nodes with chosen operating radius greater than
the percolation radius, rperc and below a fixed cutoff
radius value, rcutoff , are allowed to reduce their radius
values.

2) A node, satisfying the first rule, decides to reduce
its radius if and only if it finds another node within
its minimum radius neighbors with chosen operating
radius greater than rcutoff .

3) A node that makes the decision to reduce its radius
value selects the next fittest lower radius as its final
operating radius.

We denote the heuristic with the collaboration step as C-
Heuristic. The collaboration is designed such that only those
nodes that are less important reduce their radius values. The
impact of the reduction in radius of these nodes on MSPL is
mitigated by two things: 1) The presence of a nearby node
with radius greater than the fixed high cutoff radius, and 2)
The fact that a node reduces its radius only down to its next
fittest lower radius. The collaboration step, after the required
information has been obtained, is done independently by each
node and the decision made is also independent. Thus, an a
priori cutoff radius is needed to preclude a chain reaction
that causes most of the nodes to reduce their radii, greatly
affecting the network’s global fitness. The collaboration step
involves minimal communication overhead but produces a
significant improvement in network fitness, congestion and
mean node radius as detailed in the Simulation and Results
section. The radius distribution of the same network as in
Figure 3 after the collaboration step is shown in Figure 4.
It shows that the number of nodes with radius values less
than percolation radius has increased after the collaboration
step. Also, this radius distribution better resembles the radius
distribution of the optimal evolved network shown in Fig 2.

IV. SIMULATION AND RESULTS

We performed extensive simulations on networks with 200
nodes. The percolation radius for these network was found
to be approximately 0.11 which also worked out to be the
best radius for the homogeneous case. The other values used
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were rmin = 0.09 and rmax = 0.15 for the heuristic and the
evolved networks, with rcutoff = 0.135 for the collaboration
step. The performance of the heuristic, C-heuristic, evolved
and homogeneous networks was evaluated on the following
parameters: Fitness (as defined above), MSPL, mean node
radius, and robustness. The mean node radius is an important
criterion since it corresponds to the overall energy consump-
tion of the network. Also, the propensity of sensor nodes to
fail makes the robustness of a network to node failure a good
indicator of the network’s utility.

Figure 5 shows the fitness of 15 different networks for
the homogeneous (r = 0.11), GA, and the heuristic and
C-heuristic cases, while Figure 6 shows the plot of the
network MSPL for the same networks. Each group of bars
corresponds to a different deployment, that is, different
uniform random placements of the 200 nodes. The values
of rmin, rmax and rcutoff , listed earlier, are the same for all
these 15 different deployments and the fitness in each case is
evaluated using the same measure. It is seen that the heuristic
produces networks with better fitness and better network
MSPL than homogeneous networks. Also, the collaboration
step is seen to improve the overall fitness of the network
even though there is a slight increase in the MSPL of the
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network. Homogeneous networks at r = 0.11 are not always
connected and hence their MSPL values are high due to the
penalty incurred for disconnected nodes as seen in Figure 6.

The plot of mean node radius of the homogeneous, GA
and heuristic networks for different deployments is shown in
Figure 7. Here we see that the heuristic networks have a mean
node radius comparable to homogeneous networks. More
importantly, the collaboration step greatly reduces the mean
node radius thus minimizing the overall energy consumption
of the network.

It is seen that that the congestion in the heuristic networks
is on the higher side even after collaboration. This additional
congestion translates into an increased number of edges or
connections among the nodes. Networks with comparable
mean node radius are expected to have comparable conges-
tion but the heuristic networks have unexpectedly higher
congestion. Intuitively, a node or a network managing to
make more connections at the same radius should be more
robust. That this is indeed the case is verified through the
calculation of robustness for the different networks. We
measure robustness to node failure by randomly deleting
5% of the nodes and then calculating the network fitness.
Figure 8 shows the plot of network fitness (averaged over
multiple trials) versus percentage of nodes deleted for a
particular node deployment. It is seen that the heuristic
networks are very robust and outperform the GA networks
considerably, while both are much better than homogeneous
networks. Heuristic networks not only do better in terms of
the percentage change in fitness but emerge as the fitter
ones after node deletion for nearly all the deployments.
Since robust networks are of great interest in many wireless
network applications, we find this ancillary benefit of our
heuristic very intriguing. It will be explored more fully in
future research.

A. Optimal Heterogeneity

In a series of seminal papers, Doyle, Carlson and col-
leagues have recently raised the issue of optimality in com-
plex systems [4], [5], [7], [30], [31]. Their main point is
that optimal configurations in such systems are likely to
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be atypical rather than generic (as suggested by other re-
searchers [32]). Thus, any adaptive rule for self-organization
must be able to reach the rare optimal (or near-optimal)
configurations. Since there has been great interest recently
in whether the distribution of connectivity in networks deter-
mine global properties such as efficiency and robustness [28],
[29], [33], [34], we decided to use this distribution to exam-
ine the issue raised by Carlson et al. Taking the set of radii
found by the evolutionary algorithm for an optimal network,
we scrambled the radius assignments randomly to generate
a set of surrogate networks with the same radius distribution
as the optimal one. We then looked at the distribution of
fitness for these surrogates and how the various optimized
networks (evolved, heuristic and C-heuristic) as well as the
homogeneous network fit into this distribution. Figure 9
shows the result for two typical networks.

The fitness distribution in both cases has an exponentially
decaying form, with the homogeneous network falling to-
wards the lower end. However, the optimized networks are
all well outside the typical fitness range, demonstrating their



fundamentally atypical character, and the fact that it is not
the distribution of radii but their assignment to specific nodes
that matters. Interestingly, a very small fraction of scrambled
networks also had near-optimal fitness, indicating that the
optimal solution found is rare but not unique.

V. CONCLUSION

We have demonstrated the utility of a reverse-engineering
approach using evolutionary algorithms for obtaining local
adaptive rules in self-organizing systems. We have shown
through simulation results that a heuristic rule obtained
for setting transmission radii of nodes in a random sensor
network produces heterogeneous networks that are fit, ro-
bust and have overall energy consumption comparable to
homogeneous networks. We also found that the optimized
networks were atypical, and that their performance was not
a generic function of their radius distribution. Thus, the
heuristic derived through the reverse-engineering process
was successful in discovering truly unusual, empirically
rejecting the null hypothesis that comparable solutions could
have been discovered by random search or a less informed
adaptive rule.

The work reported here has suggested two major lines
of future work. First, as pointed out above, the process
of analyzing the evolved networks to extract the adaptive
rule is not sufficiently automated. We are considering more
systematic mechanisms for this. Second, the somewhat unex-
pected increase in robustness found for C-heuristic networks
suggests that the adaptive rule could be modified to explicitly
produce extremely robust networks. We intend to explore this
important issue in future work.
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