
Intel® Virtualization Technology for Directed I/O

Intel® Virtualization Technology

Intel®

Technology
Journal

Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 179

Intel® Virtualization Technology for Directed I/O

Darren Abramson, Mobility Group, Intel Corporation
Jeff Jackson, Corporate Technology Group, Intel Corporation

Sridhar Muthrasanallur, Digital Enterprise Group, Intel Corporation
Gil Neiger, Corporate Technology Group, Intel Corporation

Greg Regnier, Corporate Technology Group, Intel Corporation
Rajesh Sankaran, Corporate Technology Group, Intel Corporation
Ioannis Schoinas, Corporate Technology Group, Intel Corporation

Rich Uhlig, Corporate Technology Group, Intel Corporation
Balaji Vembu, Digital Enterprise Group, Intel Corporation

John Wiegert, Corporate Technology Group, Intel Corporation

Index words: Virtualization, I/O, VMM, DMA, Interrupts

ABSTRACT

Intel® Virtualization TechnologyΔ for Directed I/O (VT-d)
is the next important step toward comprehensive hardware
support for the virtualization of Intel® platforms. VT-d
extends Intel’s Virtualization Technology (VT) roadmap
from existing support for IA-32 (VT-x) [1] and Itanium®
processor (VT-i) [2] virtualization to include new support
for I/O-device virtualization. This paper surveys a variety
of established and emerging techniques for I/O
virtualization and outlines their associated problems and
challenges. We then detail the architecture of VT-d and
describe how it enables the industry to meet the future
challenges of I/O virtualization.

INTRODUCTION
There are a number of existing and emerging usage
models where support for I/O virtualization is, or will
become, increasingly important. Performance, scalability,
cost, trust, reliability, and availability are all important
considerations, and their relative importance can vary
depending upon usage models and the market segment in
which they are deployed.

There are two key requirements that are common across
market segments and usage models. The first requirement
is protected access to I/O resources from a given virtual
machine (VM), such that it cannot interfere with the
operation of another VM on the same platform. This
isolation between VMs is essential for achieving
availability, reliability, and trust. The second major
requirement is the ability to share I/O resources among

multiple VMs. In many cases, it is not practical or cost-
effective to replicate I/O resources (such as storage or
network controllers) for each VM on a given platform.

First we consider the importance of I/O virtualization in
the data center. Many server applications are I/O
intensive, especially for networking and storage. Key
requirements within the data center include scalability and
performance to enable server consolidation. Reliability
and availability are important as mission-critical
applications move onto virtualized data center servers and
infrastructures.

In the case of server consolidation, virtualization is used
to deploy multiple VMs (each containing an operating
system (OS) and associated services and applications)
onto a single server. This consolidation is done primarily
to utilize the underlying server hardware more effectively.
Many server applications require a significant amount of
I/O performance, and so it follows that the consolidation
of multiple server applications will need a scalable and
high-performance solution for I/O virtualization. The
scalability requirement comes from the fact that the total
network and storage I/O required from a given server
platform is the aggregate of the I/O requirements of the
multiple consolidated applications. I/O performance is
needed by each VM to satisfy a wide range of server
applications with varied and demanding I/O performance
requirements.

Next we look at the importance of I/O virtualization in
client platforms. For most client platforms, I/O scalability
and performance are relatively modest as compared to

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 180

servers, but tend to be more sensitive to cost and trust
issues.

In the case of the enterprise client, virtualization can be
used to create a self-contained operating environment, or
“virtual appliance,” that is dedicated to capabilities such
as manageability or security. These capabilities generally
need protected and secure access to a network device to
communicate with down-the-wire management agents and
to monitor network traffic for security threats. For
example, a security agent within a VM requires protected
access to the actual network controller hardware. This
agent can then intelligently examine network traffic for
malicious payloads or suspected intrusion attempts before
the network packets are passed to the guest OS, where
user applications might be affected.

This virtual-appliance model can be applied beyond the
enterprise client. Workstations and home computers can
use this technique for management, security, content
protection, and a wide variety of other dedicated services.
The type of service deployed may dictate that various
types of I/O resources, graphics, network, and storage
devices, be isolated from the OS where the user’s
applications are running.

In this paper we survey a variety of existing and emerging
techniques for addressing the above requirements of I/O
virtualization. We begin in the next section by studying
different options for Virtual Machine Monitor (VMM)
structuring and software architecture, and then we discuss
various techniques for sharing I/O resources among
multiple guest OSs. Our survey highlights various
challenges faced by today’s I/O-virtualization techniques,
and it underscores the need for new forms of hardware
support to facilitate I/O-resource assignment, protection,
and sharing. We then detail the architecture of Intel’s
VT-d and explain how it helps to establish a new platform
infrastructure for addressing the challenges of I/O
virtualization in future platforms based on Intel®
technology.

VMM SOFTWARE ARCHITECTURE
OPTIONS
As background, we identify and compare three distinct
types of virtualization layer (or VMM) software
architectures in this section (see Figure 1):

• OS-hosted VMMs

• Stand-alone hypervisor VMMs

• Hybrid VMMs

Each of these styles of VMM software architecture has its
pros and cons, and the choice often depends on the

particular requirements of a given usage model or market
segment.

OS-Hosted VMMs
One approach to VMM software architecture is to build
on the infrastructure of an existing OS [3] [15]. Such OS-
hosted VMMs consist of a privileged ring-0 component
(shown as the “VMM kernel” in Figure 1) that runs
alongside the kernel of the hosting OS, and that obtains
control of system resources–such as CPUs and system
memory – to create an execution environment for one or
more guest OSs. The VMM kernel context switches
between host-OS and guest-OS state at periodic intervals
as dictated by scheduling policy, or whenever host-OS
support is required (e.g., to service hardware interrupts
from a physical I/O device that is programmed by a host-
OS device driver). Although the guest OS is allowed to
directly execute on a physical CPU and to directly access
certain portions of host physical memory subject to the
control of the VMM kernel, any accesses to I/O devices
are typically intercepted by the VMM kernel and proxied
to a second, user-level component of the VMM (shown in
Figure 1 as a User-Level Monitor or ULM). The ULM
runs as an ordinary process of the host OS, and it contains
virtual I/O-device models that service I/O requests from
guest OSs. Device models in the ULM call the facilities of
the underlying host OS via its file system and networking
and graphics APIs to handle I/O requests from guest OSs.

An OS-hosted VMM architecture offers several
advantages: the VMM can leverage any I/O device drivers
that have been developed for the hosting OS, which can
significantly ease porting of the VMM to a range of
different physical host platforms. Further, the VMM can
leverage other facilities of the host OS, such as code for
scanning I/O busses, to perform I/O resource discovery
and to manage host platform power-management
functions.

A disadvantage of an OS-hosted VMM is that it is only as
reliable, available, and secure as the host OS upon which
it depends: If the host OS fails or must be rebooted (e.g.,
to install a software security patch), then all other guest
OSs must be taken out of service as well. An OS-hosted
VMM is also subject to the CPU scheduling policies of
the host OS, which serves not only the VMM and its guest
OSs, but also other applications running above the host
OS. Depending on the security, availability, or real-time
quality-of-service requirements of a given usage model,
these disadvantages may not be acceptable, and alternative
VMM software architectures may be warranted.

Stand-Alone Hypervisor VMMs
One such alternative approach is to structure the VMM as
a stand-alone hypervisor that does not depend on a hosting

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 181

OS [4, 10, 11]. A hypervisor-style VMM incorporates its
own I/O device drivers, device models, and scheduler.

A hypervisor-style VMM can fully control provisioning of
physical platform resources, enabling it to provide
scheduling and quality-of-service guarantees to its guest
OSs. An additional advantage of a hypervisor-based
VMM is that the code paths from guest OSs requests for
I/O services to the actual physical I/O device drivers are
typically shorter than in an OS-hosted VMM, which
requires I/O requests to traverse two I/O stacks, first that
of the guest OS, and then that of the host OS. Further, by
controlling and limiting the size of the hypervisor kernel,
the VMM can provide enhanced security and reliability
through a smaller trusted computing base (TCB) [5, 9].

The advantages of a hypervisor-style VMM come at the
expense of limited portability, because the necessary I/O-
device drivers for any given physical platform must be
developed to run within the hypervisor. More advanced
system functions, such as ACPI-based system power
management–which are inherited from the host OS in a
hosted VMM–must also be reimplemented in a
hypervisor-based VMM. While not as complex as a full
modern OS, a mature hypervisor-based VMM can grow to
a significant size over time, gradually compromising some
of the benefits noted earlier (e.g., improved security
through limiting the size of the TCB).

Hybrid VMMs
In an effort to retain some of the security and reliability
benefits of hypervisor-style VMM architecture, while at
the same time leveraging the facilities of an existing OS
and its associated device drivers as in an OS-hosted
VMM, some VMMs adopt a hybrid approach [6, 7, 9].

In a hybrid VMM architecture, a small hypervisor kernel
(shown in Figure 1 as a µ-hypervisor) controls CPU and
memory resources, but I/O resources are programmed by
device drivers that run in a deprivileged service OS. The
service OS functions in a manner similar to that of a host
OS in that the VMM is able to leverage its existing device
drivers. However, because the service OS is deprivileged
by the µ-hypervisor, and because it operates solely on
behalf of the VMM (i.e., it does not support other,
arbitrary user applications), it is possible to improve the
overall security and reliability of the system.

While a hybrid VMM architecture offers the promise of
retaining the best characteristics of hosted- and
hypervisor-style VMMs, it does introduce new challenges,
including new performance overheads, due to frequent
privilege-level transitions between guest OS and service
OS through the µ-hypervisor. Further, the full benefits of
deprivileging a service OS are only possible with new
hardware support for controlling device Direct Memory

Access (DMA) via the µ-hypervisor. As we will see later,
such hardware support is provided by VT-d.

Figure 1: VMM software architectures

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 182

CURRENT I/O VIRTUALIZATION
TECHNIQUES
When virtualizing an I/O device, it is necessary for the
underlying virtualization software to service several types
of operations for that device. Interactions between
software and physical devices include the following:

• Device discovery: a mechanism for software to
discover, query, and configure devices in the
platform.

• Device control: a mechanism for software to
communicate with the device and initiate I/O
operations.

• Data transfers: a mechanism for the device to transfer
data to and from system memory. Most devices
support DMA in order to transfer data.

• I/O interrupts: a mechanism for hardware to be able
to notify the software of events and state changes.

Each of these interactions is discussed, covering
implementation, challenges, advantages, and
disadvantages of each of the common virtualization
techniques. The VMM could be a single monolithic
software stack or could be a combination of a hypervisor
and specialized guests (as shown in Figure 1). The type of
VMM architecture used is independent of the concepts
discussed in this section, but will become relevant later in
our discussion.

Emulation
I/O mechanisms on native (non-virtualized) platforms are
usually performed on some type of hardware device. The
software stack, commonly a driver in an OS, will interface
with the hardware through some type of memory-mapped
(MMIO) mechanism, whereby the processor issues
instructions to read and write specific memory (or port)
address ranges. The values read and written correspond to
direct functions in hardware.

Emulation refers to the implementation of real hardware
completely in software. Its greatest advantage is that it
does not require any changes to existing guest software.
The software runs as it did in the native case, interacting
with the VMM emulator just as though it would with real
hardware. The software is unaware that it is really talking
to a virtualized device. In order for emulation to work,
several mechanisms are required.

The VMM must expose a device in a manner that it can be
discovered by the guest software. An example is to present
a device in a PCI configuration space so that the guest
software can “see” the device and discover the memory
addresses that it can use to interact with the device.

The VMM must also have some method for capturing
reads and writes to the device’s address range, as well as
capturing accesses to the device-discovery space. This
enables the VMM to emulate the real hardware with
which the guest software believes it is interfacing.

The device (usually called a device model) is
implemented by the VMM completely in software (see
Figure 2). It may be accessing a real piece of hardware in
the platform in some manner to service some I/O, but that
hardware is independent of the device model. For
example, a guest might see an Integrated Drive
Electronics (IDE) hard disk model exposed by the VMM,
while the real platform actually contains a Serial ATA
(SATA) drive.

VMM

Driver

Device

Legacy Guest

Device
Memory

Driver

write

interrupt

Device
Memory

PCI
Config

PIC
Model

Device
Models

PCI
Config

Virtual
Device

Figure 2: Device emulation model

The VMM must also have a mechanism for injecting
interrupts into the guest at appropriate times on behalf of
the emulated device. This is usually accomplished by
emulating a Programmable Interrupt Controller (PIC).
Once again, when the guest software exercises the PIC,
these accesses must be trapped and the PIC device
modeled appropriately by the VMM. While the PIC can
be thought of as just another I/O device, it has to be there
for any other interrupt-driven I/O devices to be emulated
properly.

Emulation facilitates migration of VMs from one platform
to another. Since the devices are purely emulated and have
no ties to physical devices in the platform, it is easy to
move a VM to another platform where the VMM can
support the exact same emulated devices. If the guest VM
did have some tie to any platform physical devices, those
same physical devices would need to be present on any
platform to which the VM was migrated.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 183

Emulation also facilitates the sharing of platform physical
devices of the same type, because there are instances of an
emulation model exposed to potentially many guests. The
VMM can use some type of sharing mechanism to allow
all guest’s emulation models access to the services of a
single physical device. For example, the traffic from many
guests with emulated network adapters could be bridged
onto the platform’s physical network adapter.

Since emulation presents to the guest software the exact
interface of some existing physical hardware device, it can
support a number of different guest OSs in an OS-
independent manner. For example, if a particular storage
device is emulated completely, then it will work with any
software written for that device, independent of the guest
OS, whether it be Windows*, Linux*, or some other IA-
based OS. Since most modern OSs ship with drivers for
many well-known devices, a particular device make and
model can be selected for emulation such that it will be
supported by these existing legacy environments.

While emulation’s greatest advantage is that there are no
requirements to modify guest device drivers, its largest
detractor is low performance. Each interaction of the guest
device driver with the emulated device hardware requires
a transition to the VMM, where the device model
performs the necessary emulation, and then a transition
back to the guest with the appropriate results. Depending
upon the type of I/O device that is being emulated, many
of these transactions may be required to actually retrieve
data from the device. These activities add considerable
overhead compared to normal software-hardware
interactions in a non-virtualized system. Most of this new
overhead is compute-bound in nature and increases CPU
utilization. The timing involved in each interaction can
also accumulate to increase overall latency.

Another disadvantage of emulation is that the device
model needs to emulate the hardware device very
accurately, sometimes to the revision of the hardware, and
must cover all corner cases. This can result in the need for
“bug emulation” and problems arising with new revisions
of hardware.

Paravirtualization
Another technique for virtualizing I/O is to modify the
software within the guest, an approach that is commonly
referred to as paravirtualization [4, 8]. The advantage of
I/O paravirtualization is better performance. A
disadvantage is that it requires modification of the guest
software, in particular device drivers, which limits its
applicability to legacy OS and device-driver binaries.

With paravirtualization (see Figure 3) the altered guest
software interacts directly with the VMM, usually at a
higher abstraction level than the normal

hardware/software interface. The VMM exposes an I/O
type-specific API, for example, to send and receive
network packets–in the case of a network adaptor. The
altered software in the guest then uses this VMM API
instead of interacting directly with a hardware device
interface.

Paravirtualization reduces the number of interactions
between the guest OS and VMM, resulting in better
performance (higher throughput, lower latency, reduced
CPU utilization), compared to device emulation.

Instead of using an emulated interrupt mechanism,
paravirtualization uses an eventing or callback
mechanism. This again has the potential to deliver better
performance, because interactions with a PIC hardware
interface are eliminated, and because most OS’s handle
interrupts in a staged manner, adding overhead and
latency. First, interrupts are fielded by a small Interrupt
Service Routine (ISR). An ISR usually acknowledges the
interrupt and schedules a corresponding worker task. The
worker task is then run in a different context to handle the
bulk of the work associated with the interrupt. With an
event or callback being initiated directly in the guest
software by the VMM, the work can be handled directly in
the same context. With some implementations, when the
VMM wishes to introduce an interrupt into the guest, it
must force the running guest to exit to the VMM, where
any pending interrupts can be picked up when the guest is
reentered. To force a running guest to exit, a mechanism
like IPI can be used. But this again adds overhead
compared to a direct callback or event. Again, the largest
detractor to this approach is that the interrupt handling
mechanisms of the guest OS kernel must also be altered.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 184

VMM

Paravirtual
Driver

Modified Guest

Driver

send
packet

interrupt

I/O
Interface

event

Device

Figure 3: Device paravirtualization

Since paravirtualization involves changing guest software,
usually the changed components are specific to the guest
environment. For instance, a paravirtualized storage driver
for Windows XP* will not work in a Linux environment.
Therefore, a separate paravirtualized component must be
developed and supported for each targeted guest
environment. These changes require apriori knowledge of
which guest environments will be supported by a
particular VMM.

As with device emulation, paravirtualization is supportive
of VM migration, provided that the VM is migrated to a
platform that supports the same VMM APIs required by
the guest software stack.

Sharing of any platform physical devices of the same type
is supported in the same manner as emulation. For
example, guests using a paravirtualized storage driver to
read and write data could be backed by stores on the same
physical storage device managed by the VMM.

Paravirtualization is increasingly deployed to satisfy the
performance requirements of I/O-intensive applications.
Paravirtualization of I/O classes that are performance
sensitive, such as networking, storage, and high-
performance graphics, appears to be the method of choice
in modern VMM architecture. As described, para-
virtualization of I/O decreases the number of transitions
between the client VM and the VMM, as well as
eliminates most of the processing associated with device
emulation.

Paravirtualization leads to a higher level of abstraction for
I/O interfaces within the guest OS. I/O-buffer allocation
and management policies that are aware of the fact that
they are virtualized can be used for more efficient use of
the VT-d protection and translation facilities than would
be possible with an unmodified driver that relies on full
device emulation.

At least three of the major VMM vendors have adopted
the capability to paravirtualize I/O in order to accomplish
greater scaling and performance. Xen* and VMware
already have the ability to run paravirtualized I/O drivers
and Microsoft’s plans include I/O paravirtualization in its
next-generation VMM.

Direct Assignment
There are cases where it is desirable for a physical I/O
device in the platform to be directly owned by a particular
guest VM. Like emulation, direct assignment allows the
owning guest VM to interface directly to a standard device
hardware interface. Therefore, direct device assignment
provides a native experience for the guest VM, because it
can reuse existing drivers or other software to talk directly
to the device.

Direct assignment improves performance over emulation
because it allows the guest VM device driver to talk to the
device in its native hardware command format eliminating
the overhead of translating from the device command
format of the virtual emulated device. More importantly,
direct assignment increases VMM reliability and
decreases VMM complexity since complex device drivers
can be moved from the VMM to the guest.

Direct assignment, however, is not appropriate for all
usages. First, a VMM can only allocate as many devices
as are physically present in the platform. Second, direct
assignment complicates VM migration in a number of
ways. In order to migrate a VM between platforms, a
similar device type, make, and model must be present and
available on each platform. The VMM must also develop
methods to extract any physical device state from the
source platform, and to restore that state at the destination
platform.

Moreover, in the absence of hardware support for direct
assignment, direct assignment fails to reach its full
potential in improving performance and enhancing
reliability. First, platform interrupts may still need to be
fielded by the VMM since it owns the rest of the physical
platform. These interrupts must be routed to the
appropriate guest–in this case the one that owns the
physical device. Therefore, there is still some overhead in
this relaying of interrupts. Second, existing platforms do
not provide a mechanism for a device to directly perform
data transfers to and from the system memory that belongs

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 185

to the guest VM in an efficient and secure manner. A
guest VM is typically operating in a subset of the real
physical address space. What the guest VM believes is its
physical memory really is not; it is a subset of the system
memory virtualized by the VMM for the guest. This
addressing mismatch causes a problem for DMA-capable
devices. Such devices place data directly into system
memory without involving the CPU. When the guest
device driver instructs the device to perform a transfer it is
using guest physical addresses, while the hardware is
accessing system memory using host physical addresses.

In order to deal with the address space mismatch, VMMs
that support direct assignment may employ a pass-through
driver that intercepts all communication between the guest
VM device driver and the hardware device. The pass-
through driver performs the translation between the guest
physical and real physical address spaces of all command
arguments that refer to physical addresses. Pass-through
drivers are device-specific since they must decode the
command format for a specific device to perform the
necessary translations. Such drivers perform a simpler task
than traditional device drivers; therefore, performance is
improved over emulation. However, VMM complexity
remains high, thereby impacting VMM reliability. Still,
the performance benefits have proven sufficient to employ
this method in VMMs targeted to the server space, where
it is acceptable to support direct assignment for only a
relatively small number of common devices.

VMM Software Architecture Implications
Different I/O virtualization methods are not equally
applicable to all VMM software architecture options.

Emulation is the most general I/O virtualization method,
able to expose standard I/O devices to an unmodified
guest OS. Accordingly, it is widely employed in existing
OS-hosted, stand-alone hypervisor or hybrid VMM
implementations.

As already mentioned, paravirtualization is increasingly
being deployed in many VMMs to improve performance
for common guests. It is readily applicable to stand-alone
hypervisor VMMs. It can also be used in the interaction
between the guest OS and the ULM in an OS-hosted
VMM or can be used in the guest OS and the service VM
in a hybrid VMM.

Direct assignment is used in cases where the guest OS
cannot be modified either because it is difficult to do so or
the paravirtualized guest device drivers are not qualified
for a specific application. However, it is difficult to
introduce direct assignment in an OS-hosted VMM since
in general, such VMMs do not own real platform devices
and do not maintain device drivers for such devices. On
the other hand, direct assignment naturally reduces

complexity in stand-alone hypervisor and hybrid VMMs
since device drivers can be moved to the guest OS or
service OSs, respectively. This reduced complexity is not
possible with either emulation or paravirtualization.

As our discussion suggests, it is quite likely that a VMM
can employ many different techniques for I/O
virtualization concurrently. For instance, in the context of
hybrid VMM, direct assignment might be used to assign a
platform physical device to a particular guest VM, whose
responsibility it is to share that device with many guests.
Depending upon the needs and requirements of the guest,
it may offer both emulated device models, as well as
paravirtualized solutions to the different guests. A
common configuration is to provide paravirtualized
solutions for the most common guest environments, while
an emulation solution is offered to support all other legacy
environments.

IOVM Architecture
A major emerging trend among developers of
virtualization software, in particular for I/O processing
and sharing, is the VMM system decomposition.

The trend for the software architecture of VMMs is to
move from a monolithic hypervisor model towards a
software architecture that decomposes the VMM into a
very thin privileged “micro-hypervisor” that resides just
above the physical hardware, and one or more special-
purpose VMs that are de-privileged relative to the
hypervisor, and are responsible for services and policy.
With regard to I/O virtualization, these deprivileged
components of the VMM can be responsible for I/O
processing and I/O resource sharing. We call this general
architecture the “IOVM” model (see Figure 4). The
IOVM model is a generalization of the hybrid VMM
architecture in that I/O devices can be allocated to
different service VMs specialized for the specific I/O
function (e.g., network VM, storage VM, etc.).

Two major benefits of the IOVM model are the ability to
use unmodified device drivers within the IOVM and the
isolation of the physical device and its driver(s) from the
other guest OSs, applications, and hypervisor. The use of
unmodified drivers is possible because these drivers can
run in a separate OS environment, in contrast to a
monolithic hypervisor where new drivers are often written
for the VMM environment. The isolation of the device
and its driver protect the guest VMs from driver crashes,
that is, the IOVM may crash due to a driver failure
without severely affecting the guest OSs. A disadvantage
of the IOVM model is that there is additional overhead
incurred, due to additional communication and data
movement between the guest OS and the IOVM. This
performance penalty can be offset by paravirtualizing the
interface of the IOVM, thus minimizing the number of

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 186

interactions. The Xen VMM has implemented this
architecture as “Isolated Driver Domains” [6], and
Microsoft is in the process of developing a version of this
architecture in their next generation of VMMs [7].

Direct assignment of I/O devices to IOVMs directly
facilitates this usage model and is becoming increasingly
important as VMMs are transitioning to this architecture.
As we have seen, however, software by itself is not
capable of fully protecting the system from errant DMA
traffic between the I/O device and system memory while
at the same time eliminating all device-specific
functionality in the VMM. Hardware support on the
platform closes this gap, by allowing the device to be
safely assigned to an IOVM, thus allowing full protection
from errant DMA transfers.

Figure 4: IOVM software architecture

PLATFORM HARDWARE SUPPORT FOR
I/O VIRTUALIZATION
To enforce the isolation, security, reliability, and
performance benefits of direct assignment, we need
efficient hardware mechanisms to constrain the operation
of I/O devices. The primary I/O device accesses that
require this isolation are device transfers (DMAs) and
interrupts. CPU virtualization mechanisms are sufficient
to efficiently perform device discovery and schedule
device operations.

Accordingly, VT-d [12] provides the platform hardware
support for DMA and interrupt virtualization.

DMA Remapping
DMA remapping facilities have been implemented in a
variety of contexts in the past to facilitate different usages.
In workstations and server platforms, traditional I/O
memory management units (IOMMUs) have been
implemented in PCI root bridges to efficiently support

scatter/gather operations or I/O devices with limited DMA
addressability [17]. Other well-known examples of DMA
remapping facilities include the AGP Graphics Aperture
Remapping Table (GART) [18], the Translation and
Protection Table (TPT) defined in the Virtual Interface
Architecture [14], and subsequently influencing a similar
capability in the InfiniBand Architecture [16] and Remote
DMA (RDMA) over TCP/IP specifications [19]. DMA
remapping facilities have also been explored in the
context of NICs designed for low latency cluster
interconnects [15].

Traditional IOMMUs typically support an aperture-based
architecture. All DMA requests that target a programmed
aperture address range in the system physical address
space are translated irrespective of the source of the
request. While this is useful for handling legacy device
limitations (such as limited DMA addressability or
scatter/gather capabilities), they are not adequate for I/O
virtualization usages that require full DMA isolation.

The VT-d architecture is a generalized IOMMU
architecture that enables system software to create
multiple DMA protection domains. A protection domain
is abstractly defined as an isolated environment to which a
subset of the host physical memory is allocated.
Depending on the software usage model, a DMA
protection domain may represent memory allocated to a
VM, or the DMA memory allocated by a guest-OS driver
running in a VM or as part of the VMM itself. The VT-d
architecture enables system software to assign one or more
I/O devices to a protection domain. DMA isolation is
achieved by restricting access to a protection domain’s
physical memory from I/O devices not assigned to it,
through address-translation tables.

The I/O devices assigned to a protection domain can be
provided a view of memory that may be different than the
host view of physical memory. VT-d hardware treats the
address specified in a DMA request as a DMA virtual
address (DVA). Depending on the software usage model,
a DVA may be the Guest Physical Address (GPA) of the
VM to which the I/O device is assigned, or some
software-abstracted virtual I/O address (similar to CPU
linear addresses). VT-d hardware transforms the address
in a DMA request issued by an I/O device to its
corresponding Host Physical Address (HPA).

Figure 5 illustrates DMA address translation in a multi-
domain usage. I/O devices 1 and 2 are assigned to
protection domains 1 and 2, respectively, each with its on
view of the DMA address space.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 187

Figure 5: DMA remapping

Figure 6 illustrates a PC platform configuration with VT-d
hardware implemented in the north-bridge component.

Figure 6: Platform configuration with VT-d

Mapping Devices to Protection Domains
To support multiple protection domains, the DMA
remapping hardware must identify the device originating
each DMA request. The requester identifier of a device is
composed of its PCI Bus/Device/Function number
assigned by PCI configuration software and uniquely
identifies the hardware function that initiated the request.
Figure 7 illustrates the requester-id as defined by the PCI
specifications [20].

Figure 7: PCI requester identifier format

VT-d architecture defines the following data structures for
mapping I/O devices to protection domains (see Figure 8):

• Root-Entry Table: Each entry in the root-entry table
functions as the top-level structure to map devices for
a specific PCI bus. The bus-number portion of the
requester-id in DMA requests is used to index into the
root-entry table. Each present root entry includes a
pointer to a context-entry table.

• Context-Entry Table: Each entry in the context-entry
table maps a specific I/O device on a bus to the
protection domain to which it is assigned. The device
and function-number portion of the requester-id is
used to index into the context-entry table. Each
present context entry includes a pointer to the address
translation structures used to translate the address in
the DMA request.

Figure 8: Device mapping structures

Address Translation
VT-d architecture defines a multi-level page-table
structure for DMA address translation (see Figure 9). The
multi-level page tables are similar to IA-32 processor
page-tables, enabling software to manage memory at 4 KB
or larger page granularity. Hardware implements the page-
walk logic and traverses these structures using the address
from the DMA request. The number of page-table levels
that must be traversed is specified through the context-
entry referencing the root of the page table. The page
directory and page-table entries specify independent read
and write permissions, and hardware computes the
cumulative read and write permissions encountered in a
page walk as the effective permissions for a DMA request.
The page-table and page-directory structures are always
4 KB in size, and larger page sizes (2 MB, 1 GB, etc.) are
enabled through super-page support.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 188

Figure 9: Example 3-level page table

Interrupt Remapping
For proper device isolation in a virtualized system, the
interrupt requests generated by I/O devices must be
controlled by the VMM. In the existing interrupt
architecture for Intel platforms, a device may generate
either a legacy interrupt (which is routed through I/O
interrupt controllers) or may directly issue message
signaled interrupts (MSIs) [20]. MSIs are issued as DMA
write transactions to a pre-defined architectural address
range, and the interrupt attributes (such as vector,
destination processor, delivery mode, etc.) are encoded in
the address and data of the write request. Since the
interrupt attributes are encoded in the request issued by
devices, the existing interrupt architecture does not offer
interrupt isolation across protection domains.

The VT-d interrupt-remapping architecture addresses this
problem by redefining the interrupt-message format. The
new interrupt message continues to be a DMA write
request, but the write request itself contains only a
“message identifier” and not the actual interrupt attributes.
The write request, like any DMA request, specifies the
requester-id of the hardware function generating the
interrupt.

DMA write requests identified as interrupt requests by the
hardware are subject to interrupt remapping. The
requestor-id of interrupt requests is remapped through the
table structure. Each entry in the interrupt-remapping table
corresponds to a unique interrupt message identifier from
a device and includes all the necessary interrupt attributes
(such as destination processor, vector, delivery mode,
etc.). The architecture supports remapping interrupt
messages from all sources including I/O interrupt
controllers (IOAPICs), and all flavors of MSI and MSI-X
interrupts defined in the PCI specifications.

Software Usages of DMA and Interrupt
Remapping
The VT-d architecture enables DMA and interrupt
requests from an I/O device to be isolated to its assigned
protection domain. This capability makes possible a
number of usages:

• Remapping for legacy guests: In this usage an I/O
device is assigned directly to a VM running a legacy
(virtualization unaware) environment. Since the guest
OS has the guest-physical view of memory in this
usage, the VMM programs the DMA remapping
structures for the I/O device to support appropriate
GPA to HPA mappings. Similarly, the VMM may
program the interrupt-remapping structures to enable
the interrupt requests from the I/O device to target the
physical CPUs running the appropriate virtual CPUs
of the legacy VM.

• Remapping for IOMMU-aware guests: An OS may
be capable of using DMA and interrupt remapping
hardware to improve its OS reliability or for handling
specific I/O-device limitations. When such an OS is
running within a VM, the VMM may expose virtual
(emulated or paravirtualized) remapping hardware to
the VM. The OS may create one or more protection
domains each with its own DMA Virtual Address
(DVA) space and program the virtual remapping
hardware structures to support DVA to Guest
Physical Address (GPA) mappings. The VMM must
virtualize the remapping hardware by intercepting
guest accesses to the virtual hardware and shadowing
the virtual remapping structures to provide the
physical hardware with structures for DVA to HPA
mappings. Similar page table shadowing techniques
are commonly used by the VMM for CPU MMU
virtualization.

Hardware Caching and Invalidation
Architecture
To improve DMA and interrupt-remapping performance,
the VT-d architecture allows hardware implementations to
cache frequently used remapping-structure entries.
Specifically, the following architectural caching constructs
are defined:

• Context Cache: Caches frequently used context
entries that map devices to protection domains.

• PDE (Page Directory Entry) Cache: Caches
frequently used page-directory entries encountered by
hardware during page walks.

• IOTLB (I/O Translation Look-aside Buffer): Caches
frequently used effective translations (results of the
page walk).

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 189

• Interrupt Entry Cache: Caches frequently used
interrupt-remapping table entries.

These caching structures are fully managed by the
hardware. When updating the remapping structures, the
software is responsible for maintaining the consistency of
these caches by invalidating any stale entries in the
caches. VT-d architecture defines the following
invalidation options:

• Synchronous Invalidation: The synchronous
invalidation interface uses a set of memory-mapped
registers for software to request invalidations and to
poll for invalidation completions.

• Queued Invalidation: The queued-invalidation
interface uses a memory-resident command queue for
software to queue-invalidation requests. Software
synchronizes invalidation completions with hardware
by submitting an invalidation-wait command to the
command queue. Hardware guarantees that all
invalidation requests received before an invalidation-
wait command are completed before completing the
invalidation-wait command. Hardware signals the
invalidation-wait command completion either through
an interrupt or by coherently writing a software-
specified memory location. The queued-invalidation
interface enables usages where software can batch
invalidation requests.

Scaling Address Translation Caches
Caching of the remapping structures enables hardware to
minimize the DMA translation overhead that may
otherwise be incurred when accessing the memory-
resident translation structures. One of the challenges for
DMA-remapping hardware implementations is to
efficiently scale its hardware caching structures. Unlike
CPU TLBs that support accesses from a CPU that is
typically running one thread at a time, the DMA-
remapping caches handle simultaneous DMA accesses
from multiple devices, and often multiple DMA streams
from a device.

This difference makes sizing the IOTLBs in DMA-
remapping hardware implementations challenging,
especially when the hardware design is re-used across a
wide range of platform configurations. An approach to
scaling the IOTLBs is to enable I/O devices to participate
in DMA remapping by requesting translations for its own
memory accesses from the DMA-remapping hardware and
caching these translations locally on the I/O device in a
Device-IOTLB.

To facilitate scaling of address translation caches, PCI
Express* protocol extensions (referred to as Address
Translation Services (ATS)) [22] are being standardized
by the PCI Special Interest Group (PCI-SIG) [21]. ATS

consist of a set of PCI transactions that allow the
optimization of VT-d address translations. These
extensions enable I/O devices to request translations from
the root complex and for the root complex to return
responses for each translation request. I/O devices may
cache the returned translations in its local Device-IOTLBs
and indicate if a DMA request is using un-translated
address or translated address from its Device-IOTLB. To
support usages where software may dynamically modify
the translations, the ATS protocol extensions enable the
root complex to request invalidations of translations
cached in the Device-IOTLB of an I/O device, and for the
I/O devices to return responses indicating when an
invalidation request is completed.

VT-d architecture supports ATS protocol extensions and
enables software to control (through the device-mapping
structures) if an I/O device can issue these transactions.
For DMA requests indicating translated addresses from
allowed devices, VT-d hardware bypasses the DMA-
address translation.

I/O devices may implement Device-IOTLBs and support
these protocol extensions to minimize performance
dependencies on the DMA-remapping caching resources
in the platform. However, to preserve the security,
isolation, and reliability benefits of DMA remapping,
device implementations must ensure that only translation
responses from the root complex cause entries to be
inserted into the Device IOTLB.

Handling Remapping Errors
Any errors or permission violations detected as part of
remapping a DMA request are treated as a remapping
fault. Unlike CPU page faults, which are restart-able at
instruction boundaries, DMA-remapping faults are not
restart-able due to the posted nature of PCI transactions.
Any DMA write request that generates a fault is blocked
by the remapping hardware, and the DMA read requests
return an error to the device in the read response.
Hardware logs detail DMA requests that cause remapping
faults and use a fault event (interrupt) to inform software
about such faults. For devices that explicitly request
translations, an error detected while processing the
translation request is not treated as a DMA-remapping
fault, but is merely conveyed to the device in the
translation response. This enables such devices to support
device-specific demand page faulting. Demand page
faulting is beneficial for devices (such as graphics
adapters) with large DMA footprints, enabling software to
demand pin the DMA buffers.

FUTURE HARDWARE SUPPORT
While VT-d enables the direct assignment of devices to
guest VMs, it does not directly facilitate the efficient

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 190

sharing of devices across multiple guest VMs. Such
efficient sharing is not feasible without fundamental
changes in the way that devices present their resources to
the platform. Further work is being done in the PCI-SIG
[21] [22] to enhance the PCI Express* specifications to
enable devices to be shared.

Briefly, these extensions enable PCI Express devices to
support multiple virtual functions, each of which can be
discovered, configured, and managed. This allows the
direct assignment of a virtual function to a VM using
VT-d, thus allowing a single physical device to be
sharable among multiple VMs.

The importance and applicability of these sharable PCI
Express devices may be largely dependent upon the
performance requirements, usage model, and market
segment in which they may be deployed.

CONCLUSION
The virtualization of I/O resources is an important step
toward enabling a significant set of emerging usage
models in the data center, the enterprise, and the home.
VT-d support on Intel platforms provides the capability to
ensure improved isolation of I/O resources for greater
reliability, security, and availability.

Specifically, VT-d supports the remapping of I/O DMA
transfers and device-generated interrupts. The architecture
of VT-d provides the flexibility to support multiple usage
models that may run un-modified, special-purpose, or
“virtualization aware” guest OSs. The VT-d hardware
capabilities for I/O virtualization complement the existing
Intel VT capability to virtualize processor and memory
resources. Together, this roadmap of VT technologies
offers a complete solution to provide full hardware
support for the virtualization of Intel platforms.

Ongoing and future developments within the virtualization
hardware and software communities will build upon VT-d
to ensure that the requirements for sharing, security,
performance, and scalability are being met. I/O devices
will become more aware of the existence of VT-d to
ensure efficient caching and consistency mechanisms to
enhance their performance. Given the protection provided
by VT-d, future I/O devices will emerge that are sharable
among multiple guest OSs. With VT-d, software
developers can develop and evolve their architectures that
provide fully protected sharing of I/O resources that are
highly available, provide high performance, and scale to
increasing I/O demands.

REFERENCES
[1] Intel Corp., “Intel Virtualization Technology

Specification for the IA-32 Architecture,” at
www.intel.com/technology/vt/.

[2] Intel Corp., “Intel Virtualization Technology
Specification for the Intel Itanium Architecture;” at
www.intel.com/technology/vt/.

[3] Sugarman, J., Venkitachalam, G., Lim, B.,
“Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor,” in Proceedings of
2002 USENIX Annual Technical Conference, pp.
1–14, June 2001.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in Proceedings of the
19th ACM Symposium on Operating Systems
Principles, pp. 164–177, October 2003.

[5] T. Garfinkel, B. Pfaff, J. Chow, M., Rosenblum, and
D. Boneh, “Terra: A virtual machine-based platform
for trusted computing,” in Proceedings of the 19th
ACM Symposium on Operating Systems Principles,
pp. 193–206, 2003.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williams, “Safe hardware access
with the Xen virtual machine monitor,” in Proceedings
of the First Workshop on Operating System and
Architectural Support for the on-demand IT
Infrastructure (OASIS-2004), October 2004.

[7] M. Kieffer, “Windows Virtualization Architecture,”
WinHEC 2005, at
http://download.microsoft.com/download/9/8/f/98f3fe
47-dfc3-4e74-92a3-
088782200fe7/TWAR05013_WinHEC05.ppt*.

[8] A. Whitaker, M. Shaw, and S. Gribble, “Scale and
Performance in the Denali Isolation Kernel,” in System
Design and Implementation (OSDI), Boston, MA,
December 2002.

[9] P. England, B. Lampson, J. Manferdelli, M. Peinado,
B. Willman, “A Trusted Open Platform,” IEEE
Computer, pp. 55–62, July 2003.

[10] R. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer, pp. 34–45, June 1974.

[11] R. Creasy, “The Origin of the VM/370 Time-Sharing
System,” IBM Journal of Research and Development,
pp. 483–490, September 1981.

[12] Intel Corp., “Intel Virtualization Technology
Specification for Directed I/O Specification,” at
www.intel.com/technology/vt/.

[13] Microsoft Corp., “Microsoft Virtual Server 2005
Technical Overview,” 2004, at
http://download.microsoft.com/download/5/5/3/55321
426-cb43-4672-9123-
74ca3af6911d/VS2005TechWP.doc*.

http://www.intel.com/technology/vt/
http://www.intel.com/technology/vt/
http://download.microsoft.com/download/9/8/f/98f3fe47-dfc3-4e74-92a3-088782200fe7/TWAR05013_WinHEC05.ppt
http://www.intel.com/technology/vt/
http://download.microsoft.com/download/5/5/3/55321426-cb43-4672-9123-74ca3af6911d/VS2005TechWP.doc

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 191

[14] Dave Dunning, Greg Regnier, Don Cameron, Gary
McAlpine, et al., “The Virtual Interface Architecture,”
IEEE Micro, Volume 18, Issue 2, pp. 66–76, March-
April 1998.

[15] Ioannis Schoinas and Mark D. Hill, “Address
Translation Mechanisms in Network Interfaces,” in
Proceedings of the Fourth International Symposium
on High-Performance Computer Architecture,
February 1998.

[16] InfiniBand Trade Association,
http://www.infinibandta.org/specs*.

[17] Grant Grundler, “Porting Drivers to HP ZX1,” in
Proceedings of the Ottawa Linux Symposium, June
2002.

[18] Intel Corp., AGP V3.0 Interface Specification.

[19] RDMA Consortium,
http://www.rdmaconsortium.org*

[20] PCI Express Base Specification 1.1,
http://www.pcisig.com/specifications/pciexpress/base*

[21] http://www.pcisig.com*

[22] PCI Express Address Translation Services and I/O
Virtualization, WinHEC 2006,
http://www.microsoft.com/whdc/winhec/pres06.mspx*

AUTHORS BIOGRAPHIES
Darren Abramson is a principal engineer in Intel’s
Chipset Group. He received his B.S. degree from the
University of Kansas. Darren joined Intel in 1991 and has
worked primarily on client chipset development and
architecture, bringing to market I/O initiatives such as
PCI, USB, and more recently PCI Express. His e-mail is
darren.abramson at intel.com.

Jeff Jackson is a senior architect in Intel’s Corporate
Technology Group. Recently his areas of interest have
been around networking-related technologies in
virtualized environments. Jeff received an M.S. degree in
Computer Science from Purdue University in 1994. His
e-mail is jeff.jackson at intel.com.

Sridhar Muthrasanallur is a senior I/O architect in
Intel's Digital Enterprise Group. He has eight years of
experience in architecting I/O solutions for the Intel®
Server Chipsets. His e-mail is sridhar.muthrasanallur at
intel.com.

Gil Neiger is a principal engineer in Intel’s Corporate
Technology Group and leads development of the VT-x
architecture. He received his Ph.D. degree in Computer
Science from Cornell University.

Greg Regnier is a principal engineer in Intel’s Corporate
Technology Group. He joined Intel in 1988 and his
experiences include massively parallel supercomputers,
cluster communications, and high-performance network
architecture. Regnier has a B.S. degree in Computer
Science from St. Cloud State University in Minnesota. His
e-mail is greg.j.regnier at intel.com.

Rajesh Sankaran is a principal engineer in Intel’s
Corporate Technology Group and is involved in
development of CPU and I/O virtualization architecture.
He received his M.S. degree in Electrical Engineering
from Portland State University. His e-mail is
rajesh.sankaran at intel.com.

Ioannis (Yannis) Schoinas is a principal engineer in
Intel’s Corporate Technology Group. He received his B.S.
and M.S. degrees from the University of Crete-Heraclion
and his Ph.D. degree from the University of Wisconsin-
Madison. Yannis joined Intel’s Server Architecture Lab in
1998 and worked on coherence protocols for the i870
chipset and future Intel® platforms. He also worked on a
wide range of platform architecture topics including
memory RAS, system partitioning, configuration
management, system security and VT-d architecture. He is
currently focusing on Tera-Scale Computing architecture
challenges. His e-mail is ioannis.t.schoinas at intel.com.

Rich Uhlig is a senior principal engineer in Intel’s
Corporate Technology Group and leads various aspects of
Intel's Virtualization Technology program, including
architecture definition, research prototyping, performance
analysis and characterization of VMM software usage.
Rich received a Ph.D. degree in Computer Science and
Engineering from the University of Michigan in 1995.

Balaji Vembu is a client ingredient architect in Intel’s
DEG Architecture and Planning group. He received his
Bachelor’s degree in EE from Regional Engg College,
Bhopal, India. He received his M.S. degree in Computer
Science from the University of California, Santa Barbara.
He joined Intel in 1993 and worked on graphics and video
acceleration in the chipset group. He is currently focused
on virtualization and security architecture definition for
client platforms. His e-mail is balaji.vembu at intel.com.

John Wiegert is a senior software engineer in Intel’s
Corporate Technology Group. John received his B.S.
degree in Computer Science from the Rochester Institute
of Technology. His current research interests involve I/O
virtualization. His e-mail is john.a.wiegert at intel.com.

Δ Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform software enabled for it. Functionality,

http://www.infinibandta.org/specs
http://www.rdmaconsortium.org
http://www.pcisig.com/specifications/pciexpress/base
http://www.pcisig.com
http://www.microsoft.com/whdc/winhec/pres06.mspx

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology for Directed I/O 192

performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check with
your application vendor.

Copyright © Intel Corporation 2006. All rights reserved.
Intel and Itanium are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property
of others.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a design
with this information. Contact your local Intel sales office
or your distributor to obtain the latest specifications and
before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED
IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

