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ABSTRACT 

Intel® Virtualization TechnologyΔ for Directed I/O (VT-d) 
is the next important step toward comprehensive hardware 
support for the virtualization of Intel® platforms. VT-d 
extends Intel’s Virtualization Technology (VT) roadmap 
from existing support for IA-32 (VT-x) [1] and Itanium® 
processor (VT-i) [2] virtualization to include new support 
for I/O-device virtualization. This paper surveys a variety 
of established and emerging techniques for I/O 
virtualization and outlines their associated problems and 
challenges. We then detail the architecture of VT-d and 
describe how it enables the industry to meet the future 
challenges of I/O virtualization.  

INTRODUCTION 
There are a number of existing and emerging usage 
models where support for I/O virtualization is, or will 
become, increasingly important. Performance, scalability, 
cost, trust, reliability, and availability are all important 
considerations, and their relative importance can vary 
depending upon usage models and the market segment in 
which they are deployed. 

There are two key requirements that are common across 
market segments and usage models. The first requirement 
is protected access to I/O resources from a given virtual 
machine (VM), such that it cannot interfere with the 
operation of another VM on the same platform. This 
isolation between VMs is essential for achieving 
availability, reliability, and trust. The second major 
requirement is the ability to share I/O resources among 

multiple VMs. In many cases, it is not practical or cost-
effective to replicate I/O resources (such as storage or 
network controllers) for each VM on a given platform.  

First we consider the importance of I/O virtualization in 
the data center. Many server applications are I/O 
intensive, especially for networking and storage. Key 
requirements within the data center include scalability and 
performance to enable server consolidation. Reliability 
and availability are important as mission-critical 
applications move onto virtualized data center servers and 
infrastructures.  

In the case of server consolidation, virtualization is used 
to deploy multiple VMs (each containing an operating 
system (OS) and associated services and applications) 
onto a single server. This consolidation is done primarily 
to utilize the underlying server hardware more effectively. 
Many server applications require a significant amount of 
I/O performance, and so it follows that the consolidation 
of multiple server applications will need a scalable and 
high-performance solution for I/O virtualization. The 
scalability requirement comes from the fact that the total 
network and storage I/O required from a given server 
platform is the aggregate of the I/O requirements of the 
multiple consolidated applications. I/O performance is 
needed by each VM to satisfy a wide range of server 
applications with varied and demanding I/O performance 
requirements. 

Next we look at the importance of I/O virtualization in 
client platforms. For most client platforms, I/O scalability 
and performance are relatively modest as compared to 
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servers, but tend to be more sensitive to cost and trust 
issues.  

In the case of the enterprise client, virtualization can be 
used to create a self-contained operating environment, or 
“virtual appliance,” that is dedicated to capabilities such 
as manageability or security. These capabilities generally 
need protected and secure access to a network device to 
communicate with down-the-wire management agents and 
to monitor network traffic for security threats. For 
example, a security agent within a VM requires protected 
access to the actual network controller hardware. This 
agent can then intelligently examine network traffic for 
malicious payloads or suspected intrusion attempts before 
the network packets are passed to the guest OS, where 
user applications might be affected. 

This virtual-appliance model can be applied beyond the 
enterprise client. Workstations and home computers can 
use this technique for management, security, content 
protection, and a wide variety of other dedicated services. 
The type of service deployed may dictate that various 
types of I/O resources, graphics, network, and storage 
devices, be isolated from the OS where the user’s 
applications are running. 

In this paper we survey a variety of existing and emerging 
techniques for addressing the above requirements of I/O 
virtualization. We begin in the next section by studying 
different options for Virtual Machine Monitor (VMM) 
structuring and software architecture, and then we discuss 
various techniques for sharing I/O resources among 
multiple guest OSs. Our survey highlights various 
challenges faced by today’s I/O-virtualization techniques, 
and it underscores the need for new forms of hardware 
support to facilitate I/O-resource assignment, protection, 
and sharing. We then detail the architecture of Intel’s  
VT-d and explain how it helps to establish a new platform 
infrastructure for addressing the challenges of I/O 
virtualization in future platforms based on Intel® 
technology. 

VMM SOFTWARE ARCHITECTURE 
OPTIONS 
As background, we identify and compare three distinct 
types of virtualization layer (or VMM) software 
architectures in this section (see Figure 1): 

• OS-hosted VMMs 

• Stand-alone hypervisor VMMs 

• Hybrid VMMs 

Each of these styles of VMM software architecture has its 
pros and cons, and the choice often depends on the 

particular requirements of a given usage model or market 
segment. 

OS-Hosted VMMs 
One approach to VMM software architecture is to build 
on the infrastructure of an existing OS [3] [15]. Such OS-
hosted VMMs consist of a privileged ring-0 component 
(shown as the “VMM kernel” in Figure 1) that runs 
alongside the kernel of the hosting OS, and that obtains 
control of system resources–such as CPUs and system 
memory – to create an execution environment for one or 
more guest OSs. The VMM kernel context switches 
between host-OS and guest-OS state at periodic intervals 
as dictated by scheduling policy, or whenever host-OS 
support is required (e.g., to service hardware interrupts 
from a physical I/O device that is programmed by a host-
OS device driver). Although the guest OS is allowed to 
directly execute on a physical CPU and to directly access 
certain portions of host physical memory subject to the 
control of the VMM kernel, any accesses to I/O devices 
are typically intercepted by the VMM kernel and proxied 
to a second, user-level component of the VMM (shown in 
Figure 1 as a User-Level Monitor or ULM). The ULM 
runs as an ordinary process of the host OS, and it contains 
virtual I/O-device models that service I/O requests from 
guest OSs. Device models in the ULM call the facilities of 
the underlying host OS via its file system and networking 
and graphics APIs to handle I/O requests from guest OSs. 

An OS-hosted VMM architecture offers several 
advantages: the VMM can leverage any I/O device drivers 
that have been developed for the hosting OS, which can 
significantly ease porting of the VMM to a range of 
different physical host platforms. Further, the VMM can 
leverage other facilities of the host OS, such as code for 
scanning I/O busses, to perform I/O resource discovery 
and to manage host platform power-management 
functions. 

A disadvantage of an OS-hosted VMM is that it is only as 
reliable, available, and secure as the host OS upon which 
it depends: If the host OS fails or must be rebooted (e.g., 
to install a software security patch), then all other guest 
OSs must be taken out of service as well. An OS-hosted 
VMM is also subject to the CPU scheduling policies of 
the host OS, which serves not only the VMM and its guest 
OSs, but also other applications running above the host 
OS. Depending on the security, availability, or real-time 
quality-of-service requirements of a given usage model, 
these disadvantages may not be acceptable, and alternative 
VMM software architectures may be warranted. 

Stand-Alone Hypervisor VMMs 
One such alternative approach is to structure the VMM as 
a stand-alone hypervisor that does not depend on a hosting 
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OS [4, 10, 11]. A hypervisor-style VMM incorporates its 
own I/O device drivers, device models, and scheduler.  

A hypervisor-style VMM can fully control provisioning of 
physical platform resources, enabling it to provide 
scheduling and quality-of-service guarantees to its guest 
OSs. An additional advantage of a hypervisor-based 
VMM is that the code paths from guest OSs requests for 
I/O services to the actual physical I/O device drivers are 
typically shorter than in an OS-hosted VMM, which 
requires I/O requests to traverse two I/O stacks, first that 
of the guest OS, and then that of the host OS. Further, by 
controlling and limiting the size of the hypervisor kernel, 
the VMM can provide enhanced security and reliability 
through a smaller trusted computing base (TCB) [5, 9]. 

The advantages of a hypervisor-style VMM come at the 
expense of limited portability, because the necessary I/O-
device drivers for any given physical platform must be 
developed to run within the hypervisor. More advanced 
system functions, such as ACPI-based system power 
management–which are inherited from the host OS in a 
hosted VMM–must also be reimplemented in a 
hypervisor-based VMM. While not as complex as a full 
modern OS, a mature hypervisor-based VMM can grow to 
a significant size over time, gradually compromising some 
of the benefits noted earlier (e.g., improved security 
through limiting the size of the TCB). 

Hybrid VMMs 
In an effort to retain some of the security and reliability 
benefits of hypervisor-style VMM architecture, while at 
the same time leveraging the facilities of an existing OS 
and its associated device drivers as in an OS-hosted 
VMM, some VMMs adopt a hybrid approach [6, 7, 9]. 

In a hybrid VMM architecture, a small hypervisor kernel 
(shown in Figure 1 as a µ-hypervisor) controls CPU and 
memory resources, but I/O resources are programmed by 
device drivers that run in a deprivileged service OS. The 
service OS functions in a manner similar to that of a host 
OS in that the VMM is able to leverage its existing device 
drivers. However, because the service OS is deprivileged 
by the µ-hypervisor, and because it operates solely on 
behalf of the VMM (i.e., it does not support other, 
arbitrary user applications), it is possible to improve the 
overall security and reliability of the system. 

While a hybrid VMM architecture offers the promise of 
retaining the best characteristics of hosted- and 
hypervisor-style VMMs, it does introduce new challenges, 
including new performance overheads, due to frequent 
privilege-level transitions between guest OS and service 
OS through the µ-hypervisor. Further, the full benefits of 
deprivileging a service OS are only possible with new 
hardware support for controlling device Direct Memory 

Access (DMA) via the µ-hypervisor. As we will see later, 
such hardware support is provided by VT-d. 

 

  

Figure 1: VMM software architectures 
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CURRENT I/O VIRTUALIZATION 
TECHNIQUES 
When virtualizing an I/O device, it is necessary for the 
underlying virtualization software to service several types 
of operations for that device. Interactions between 
software and physical devices include the following:  

• Device discovery: a mechanism for software to 
discover, query, and configure devices in the 
platform.  

• Device control: a mechanism for software to 
communicate with the device and initiate I/O 
operations.  

• Data transfers: a mechanism for the device to transfer 
data to and from system memory. Most devices 
support DMA in order to transfer data. 

• I/O interrupts: a mechanism for hardware to be able 
to notify the software of events and state changes.  

Each of these interactions is discussed, covering 
implementation, challenges, advantages, and 
disadvantages of each of the common virtualization 
techniques. The VMM could be a single monolithic 
software stack or could be a combination of a hypervisor 
and specialized guests (as shown in Figure 1). The type of 
VMM architecture used is independent of the concepts 
discussed in this section, but will become relevant later in 
our discussion.  

Emulation 
I/O mechanisms on native (non-virtualized) platforms are 
usually performed on some type of hardware device. The 
software stack, commonly a driver in an OS, will interface 
with the hardware through some type of memory-mapped 
(MMIO) mechanism, whereby the processor issues 
instructions to read and write specific memory (or port) 
address ranges. The values read and written correspond to 
direct functions in hardware. 

Emulation refers to the implementation of real hardware 
completely in software. Its greatest advantage is that it 
does not require any changes to existing guest software. 
The software runs as it did in the native case, interacting 
with the VMM emulator just as though it would with real 
hardware. The software is unaware that it is really talking 
to a virtualized device. In order for emulation to work, 
several mechanisms are required. 

The VMM must expose a device in a manner that it can be 
discovered by the guest software. An example is to present 
a device in a PCI configuration space so that the guest 
software can “see” the device and discover the memory 
addresses that it can use to interact with the device.  

The VMM must also have some method for capturing 
reads and writes to the device’s address range, as well as 
capturing accesses to the device-discovery space. This 
enables the VMM to emulate the real hardware with 
which the guest software believes it is interfacing.  

The device (usually called a device model) is 
implemented by the VMM completely in software (see 
Figure 2). It may be accessing a real piece of hardware in 
the platform in some manner to service some I/O, but that 
hardware is independent of the device model. For 
example, a guest might see an Integrated Drive 
Electronics (IDE) hard disk model exposed by the VMM, 
while the real platform actually contains a Serial ATA 
(SATA) drive.  

VMM

Driver

Device

Legacy Guest

Device
Memory

Driver

write

interrupt

Device
Memory

PCI
Config

PIC
Model

Device
Models

PCI
Config

Virtual
Device

 

Figure 2: Device emulation model 

The VMM must also have a mechanism for injecting 
interrupts into the guest at appropriate times on behalf of 
the emulated device. This is usually accomplished by 
emulating a Programmable Interrupt Controller (PIC). 
Once again, when the guest software exercises the PIC, 
these accesses must be trapped and the PIC device 
modeled appropriately by the VMM. While the PIC can 
be thought of as just another I/O device, it has to be there 
for any other interrupt-driven I/O devices to be emulated 
properly. 

Emulation facilitates migration of VMs from one platform 
to another. Since the devices are purely emulated and have 
no ties to physical devices in the platform, it is easy to 
move a VM to another platform where the VMM can 
support the exact same emulated devices. If the guest VM 
did have some tie to any platform physical devices, those 
same physical devices would need to be present on any 
platform to which the VM was migrated. 
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Emulation also facilitates the sharing of platform physical 
devices of the same type, because there are instances of an 
emulation model exposed to potentially many guests. The 
VMM can use some type of sharing mechanism to allow 
all guest’s emulation models access to the services of a 
single physical device. For example, the traffic from many 
guests with emulated network adapters could be bridged 
onto the platform’s physical network adapter. 

Since emulation presents to the guest software the exact 
interface of some existing physical hardware device, it can 
support a number of different guest OSs in an OS-
independent manner. For example, if a particular storage 
device is emulated completely, then it will work with any 
software written for that device, independent of the guest 
OS, whether it be Windows*, Linux*, or some other IA-
based OS. Since most modern OSs ship with drivers for 
many well-known devices, a particular device make and 
model can be selected for emulation such that it will be 
supported by these existing legacy environments. 

While emulation’s greatest advantage is that there are no 
requirements to modify guest device drivers, its largest 
detractor is low performance. Each interaction of the guest 
device driver with the emulated device hardware requires 
a transition to the VMM, where the device model 
performs the necessary emulation, and then a transition 
back to the guest with the appropriate results. Depending 
upon the type of I/O device that is being emulated, many 
of these transactions may be required to actually retrieve 
data from the device. These activities add considerable 
overhead compared to normal software-hardware 
interactions in a non-virtualized system. Most of this new 
overhead is compute-bound in nature and increases CPU 
utilization. The timing involved in each interaction can 
also accumulate to increase overall latency.  

Another disadvantage of emulation is that the device 
model needs to emulate the hardware device very 
accurately, sometimes to the revision of the hardware, and 
must cover all corner cases. This can result in the need for 
“bug emulation” and problems arising with new revisions 
of hardware. 

Paravirtualization 
Another technique for virtualizing I/O is to modify the 
software within the guest, an approach that is commonly 
referred to as paravirtualization [4, 8]. The advantage of 
I/O paravirtualization is better performance. A 
disadvantage is that it requires modification of the guest 
software, in particular device drivers, which limits its 
applicability to legacy OS and device-driver binaries. 

With paravirtualization (see Figure 3) the altered guest 
software interacts directly with the VMM, usually at a 
higher abstraction level than the normal 

hardware/software interface. The VMM exposes an I/O 
type-specific API, for example, to send and receive 
network packets–in the case of a network adaptor. The 
altered software in the guest then uses this VMM API 
instead of interacting directly with a hardware device 
interface. 

Paravirtualization reduces the number of interactions 
between the guest OS and VMM, resulting in better 
performance (higher throughput, lower latency, reduced 
CPU utilization), compared to device emulation. 

Instead of using an emulated interrupt mechanism, 
paravirtualization uses an eventing or callback 
mechanism. This again has the potential to deliver better 
performance, because interactions with a PIC hardware 
interface are eliminated, and because most OS’s handle 
interrupts in a staged manner, adding overhead and 
latency. First, interrupts are fielded by a small Interrupt 
Service Routine (ISR). An ISR usually acknowledges the 
interrupt and schedules a corresponding worker task. The 
worker task is then run in a different context to handle the 
bulk of the work associated with the interrupt. With an 
event or callback being initiated directly in the guest 
software by the VMM, the work can be handled directly in 
the same context. With some implementations, when the 
VMM wishes to introduce an interrupt into the guest, it 
must force the running guest to exit to the VMM, where 
any pending interrupts can be picked up when the guest is 
reentered. To force a running guest to exit, a mechanism 
like IPI can be used. But this again adds overhead 
compared to a direct callback or event. Again, the largest 
detractor to this approach is that the interrupt handling 
mechanisms of the guest OS kernel must also be altered. 
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Figure 3: Device paravirtualization 

Since paravirtualization involves changing guest software, 
usually the changed components are specific to the guest 
environment. For instance, a paravirtualized storage driver 
for Windows XP* will not work in a Linux environment. 
Therefore, a separate paravirtualized component must be 
developed and supported for each targeted guest 
environment. These changes require apriori knowledge of 
which guest environments will be supported by a 
particular VMM. 

As with device emulation, paravirtualization is supportive 
of VM migration, provided that the VM is migrated to a 
platform that supports the same VMM APIs required by 
the guest software stack. 

Sharing of any platform physical devices of the same type 
is supported in the same manner as emulation. For 
example, guests using a paravirtualized storage driver to 
read and write data could be backed by stores on the same 
physical storage device managed by the VMM. 

Paravirtualization is increasingly deployed to satisfy the 
performance requirements of I/O-intensive applications. 
Paravirtualization of I/O classes that are performance 
sensitive, such as networking, storage, and high-
performance graphics, appears to be the method of choice 
in modern VMM architecture. As described, para-
virtualization of I/O decreases the number of transitions 
between the client VM and the VMM, as well as 
eliminates most of the processing associated with device 
emulation.  

Paravirtualization leads to a higher level of abstraction for 
I/O interfaces within the guest OS. I/O-buffer allocation 
and management policies that are aware of the fact that 
they are virtualized can be used for more efficient use of 
the VT-d protection and translation facilities than would 
be possible with an unmodified driver that relies on full 
device emulation. 

At least three of the major VMM vendors have adopted 
the capability to paravirtualize I/O in order to accomplish 
greater scaling and performance. Xen* and VMware 
already have the ability to run paravirtualized I/O drivers 
and Microsoft’s plans include I/O paravirtualization in its 
next-generation VMM. 

Direct Assignment 
There are cases where it is desirable for a physical I/O 
device in the platform to be directly owned by a particular 
guest VM. Like emulation, direct assignment allows the 
owning guest VM to interface directly to a standard device 
hardware interface. Therefore, direct device assignment 
provides a native experience for the guest VM, because it 
can reuse existing drivers or other software to talk directly 
to the device.  

Direct assignment improves performance over emulation 
because it allows the guest VM device driver to talk to the 
device in its native hardware command format eliminating 
the overhead of translating from the device command 
format of the virtual emulated device. More importantly, 
direct assignment increases VMM reliability and 
decreases VMM complexity since complex device drivers 
can be moved from the VMM to the guest. 

Direct assignment, however, is not appropriate for all 
usages. First, a VMM can only allocate as many devices 
as are physically present in the platform. Second, direct 
assignment complicates VM migration in a number of 
ways. In order to migrate a VM between platforms, a 
similar device type, make, and model must be present and 
available on each platform. The VMM must also develop 
methods to extract any physical device state from the 
source platform, and to restore that state at the destination 
platform. 

Moreover, in the absence of hardware support for direct 
assignment, direct assignment fails to reach its full 
potential in improving performance and enhancing 
reliability. First, platform interrupts may still need to be 
fielded by the VMM since it owns the rest of the physical 
platform. These interrupts must be routed to the 
appropriate guest–in this case the one that owns the 
physical device. Therefore, there is still some overhead in 
this relaying of interrupts. Second, existing platforms do 
not provide a mechanism for a device to directly perform 
data transfers to and from the system memory that belongs 
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to the guest VM in an efficient and secure manner. A 
guest VM is typically operating in a subset of the real 
physical address space. What the guest VM believes is its 
physical memory really is not; it is a subset of the system 
memory virtualized by the VMM for the guest. This 
addressing mismatch causes a problem for DMA-capable 
devices. Such devices place data directly into system 
memory without involving the CPU. When the guest 
device driver instructs the device to perform a transfer it is 
using guest physical addresses, while the hardware is 
accessing system memory using host physical addresses. 

In order to deal with the address space mismatch, VMMs 
that support direct assignment may employ a pass-through 
driver that intercepts all communication between the guest 
VM device driver and the hardware device. The pass-
through driver performs the translation between the guest 
physical and real physical address spaces of all command 
arguments that refer to physical addresses. Pass-through 
drivers are device-specific since they must decode the 
command format for a specific device to perform the 
necessary translations. Such drivers perform a simpler task 
than traditional device drivers; therefore, performance is 
improved over emulation. However, VMM complexity 
remains high, thereby impacting VMM reliability. Still, 
the performance benefits have proven sufficient to employ 
this method in VMMs targeted to the server space, where 
it is acceptable to support direct assignment for only a 
relatively small number of common devices.   

VMM Software Architecture Implications 
Different I/O virtualization methods are not equally 
applicable to all VMM software architecture options.  

Emulation is the most general I/O virtualization method, 
able to expose standard I/O devices to an unmodified 
guest OS. Accordingly, it is widely employed in existing 
OS-hosted, stand-alone hypervisor or hybrid VMM 
implementations. 

As already mentioned, paravirtualization is increasingly 
being deployed in many VMMs to improve performance 
for common guests. It is readily applicable to stand-alone 
hypervisor VMMs. It can also be used in the interaction 
between the guest OS and the ULM in an OS-hosted 
VMM or can be used in the guest OS and the service VM 
in a hybrid VMM.  

Direct assignment is used in cases where the guest OS 
cannot be modified either because it is difficult to do so or 
the paravirtualized guest device drivers are not qualified 
for a specific application. However, it is difficult to 
introduce direct assignment in an OS-hosted VMM since 
in general, such VMMs do not own real platform devices 
and do not maintain device drivers for such devices. On 
the other hand, direct assignment naturally reduces 

complexity in stand-alone hypervisor and hybrid VMMs 
since device drivers can be moved to the guest OS or 
service OSs, respectively. This reduced complexity is not 
possible with either emulation or paravirtualization.  

As our discussion suggests, it is quite likely that a VMM 
can employ many different techniques for I/O 
virtualization concurrently. For instance, in the context of 
hybrid VMM, direct assignment might be used to assign a 
platform physical device to a particular guest VM, whose 
responsibility it is to share that device with many guests. 
Depending upon the needs and requirements of the guest, 
it may offer both emulated device models, as well as 
paravirtualized solutions to the different guests. A 
common configuration is to provide paravirtualized 
solutions for the most common guest environments, while 
an emulation solution is offered to support all other legacy 
environments. 

IOVM Architecture 
A major emerging trend among developers of 
virtualization software, in particular for I/O processing 
and sharing, is the VMM system decomposition.  

The trend for the software architecture of VMMs is to 
move from a monolithic hypervisor model towards a 
software architecture that decomposes the VMM into a 
very thin privileged “micro-hypervisor” that resides just 
above the physical hardware, and one or more special-
purpose VMs that are de-privileged relative to the 
hypervisor, and are responsible for services and policy. 
With regard to I/O virtualization, these deprivileged 
components of the VMM can be responsible for I/O 
processing and I/O resource sharing. We call this general 
architecture the “IOVM” model (see Figure 4).  The 
IOVM model is a generalization of the hybrid VMM 
architecture in that I/O devices can be allocated to 
different service VMs specialized for the specific I/O 
function (e.g., network VM, storage VM, etc.).  

Two major benefits of the IOVM model are the ability to 
use unmodified device drivers within the IOVM and the 
isolation of the physical device and its driver(s) from the 
other guest OSs, applications, and hypervisor. The use of 
unmodified drivers is possible because these drivers can 
run in a separate OS environment, in contrast to a 
monolithic hypervisor where new drivers are often written 
for the VMM environment. The isolation of the device 
and its driver protect the guest VMs from driver crashes, 
that is, the IOVM may crash due to a driver failure 
without severely affecting the guest OSs. A disadvantage 
of the IOVM model is that there is additional overhead 
incurred, due to additional communication and data 
movement between the guest OS and the IOVM. This 
performance penalty can be offset by paravirtualizing the 
interface of the IOVM, thus minimizing the number of 
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interactions. The Xen VMM has implemented this 
architecture as “Isolated Driver Domains” [6], and 
Microsoft is in the process of developing a version of this 
architecture in their next generation of VMMs [7]. 

Direct assignment of I/O devices to IOVMs directly 
facilitates this usage model and is becoming increasingly 
important as VMMs are transitioning to this architecture. 
As we have seen, however, software by itself is not 
capable of fully protecting the system from errant DMA 
traffic between the I/O device and system memory while 
at the same time eliminating all device-specific 
functionality in the VMM. Hardware support on the 
platform closes this gap, by allowing the device to be 
safely assigned to an IOVM, thus allowing full protection 
from errant DMA transfers.  

 

Figure 4: IOVM software architecture 

PLATFORM HARDWARE SUPPORT FOR 
I/O VIRTUALIZATION  
To enforce the isolation, security, reliability, and 
performance benefits of direct assignment, we need 
efficient hardware mechanisms to constrain the operation 
of I/O devices. The primary I/O device accesses that 
require this isolation are device transfers (DMAs) and 
interrupts. CPU virtualization mechanisms are sufficient 
to efficiently perform device discovery and schedule 
device operations.  

Accordingly, VT-d [12] provides the platform hardware 
support for DMA and interrupt virtualization. 

DMA Remapping 
DMA remapping facilities have been implemented in a 
variety of contexts in the past to facilitate different usages. 
In workstations and server platforms, traditional I/O 
memory management units (IOMMUs) have been 
implemented in PCI root bridges to efficiently support 

scatter/gather operations or I/O devices with limited DMA 
addressability [17]. Other well-known examples of DMA 
remapping facilities include the AGP Graphics Aperture 
Remapping Table (GART) [18], the Translation and 
Protection Table (TPT) defined in the Virtual Interface 
Architecture [14], and subsequently influencing a similar 
capability in the InfiniBand Architecture [16] and Remote 
DMA (RDMA) over TCP/IP specifications [19]. DMA 
remapping facilities have also been explored in the 
context of NICs designed for low latency cluster 
interconnects [15]. 

Traditional IOMMUs typically support an aperture-based 
architecture. All DMA requests that target a programmed 
aperture address range in the system physical address 
space are translated irrespective of the source of the 
request. While this is useful for handling legacy device 
limitations (such as limited DMA addressability or 
scatter/gather capabilities), they are not adequate for I/O 
virtualization usages that require full DMA isolation.  

The VT-d architecture is a generalized IOMMU 
architecture that enables system software to create 
multiple DMA protection domains. A protection domain 
is abstractly defined as an isolated environment to which a 
subset of the host physical memory is allocated. 
Depending on the software usage model, a DMA 
protection domain may represent memory allocated to a 
VM, or the DMA memory allocated by a guest-OS driver 
running in a VM or as part of the VMM itself. The VT-d 
architecture enables system software to assign one or more 
I/O devices to a protection domain. DMA isolation is 
achieved by restricting access to a protection domain’s 
physical memory from I/O devices not assigned to it, 
through address-translation tables. 

The I/O devices assigned to a protection domain can be 
provided a view of memory that may be different than the 
host view of physical memory. VT-d hardware treats the 
address specified in a DMA request as a DMA virtual 
address (DVA). Depending on the software usage model, 
a DVA may be the Guest Physical Address (GPA) of the 
VM to which the I/O device is assigned, or some 
software-abstracted virtual I/O address (similar to CPU 
linear addresses). VT-d hardware transforms the address 
in a DMA request issued by an I/O device to its 
corresponding Host Physical Address (HPA). 

Figure 5 illustrates DMA address translation in a multi-
domain usage. I/O devices 1 and 2 are assigned to 
protection domains 1 and 2, respectively, each with its on 
view of the DMA address space. 
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Figure 5: DMA remapping 

Figure 6 illustrates a PC platform configuration with VT-d 
hardware implemented in the north-bridge component.  

 

Figure 6: Platform configuration with VT-d 

Mapping Devices to Protection Domains 
To support multiple protection domains, the DMA 
remapping hardware must identify the device originating 
each DMA request. The requester identifier of a device is 
composed of its PCI Bus/Device/Function number 
assigned by PCI configuration software and uniquely 
identifies the hardware function that initiated the request. 
Figure 7 illustrates the requester-id as defined by the PCI 
specifications [20]. 

 

Figure 7: PCI requester identifier format 

VT-d architecture defines the following data structures for 
mapping I/O devices to protection domains (see Figure 8): 

• Root-Entry Table: Each entry in the root-entry table 
functions as the top-level structure to map devices for 
a specific PCI bus. The bus-number portion of the 
requester-id in DMA requests is used to index into the 
root-entry table. Each present root entry includes a 
pointer to a context-entry table. 

• Context-Entry Table: Each entry in the context-entry 
table maps a specific I/O device on a bus to the 
protection domain to which it is assigned. The device 
and function-number portion of the requester-id is 
used to index into the context-entry table. Each 
present context entry includes a pointer to the address 
translation structures used to translate the address in 
the DMA request. 

 
Figure 8: Device mapping structures 

Address Translation 
VT-d architecture defines a multi-level page-table 
structure for DMA address translation (see Figure 9). The 
multi-level page tables are similar to IA-32 processor 
page-tables, enabling software to manage memory at 4 KB 
or larger page granularity. Hardware implements the page-
walk logic and traverses these structures using the address 
from the DMA request. The number of page-table levels 
that must be traversed is specified through the context-
entry referencing the root of the page table. The page 
directory and page-table entries specify independent read 
and write permissions, and hardware computes the 
cumulative read and write permissions encountered in a 
page walk as the effective permissions for a DMA request. 
The page-table and page-directory structures are always 
4 KB in size, and larger page sizes (2 MB, 1 GB, etc.) are 
enabled through super-page support. 
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Figure 9: Example 3-level page table 

Interrupt Remapping  
For proper device isolation in a virtualized system, the 
interrupt requests generated by I/O devices must be 
controlled by the VMM. In the existing interrupt 
architecture for Intel platforms, a device may generate 
either a legacy interrupt (which is routed through I/O 
interrupt controllers) or may directly issue message 
signaled interrupts (MSIs) [20]. MSIs are issued as DMA 
write transactions to a pre-defined architectural address 
range, and the interrupt attributes (such as vector, 
destination processor, delivery mode, etc.) are encoded in 
the address and data of the write request. Since the 
interrupt attributes are encoded in the request issued by 
devices, the existing interrupt architecture does not offer 
interrupt isolation across protection domains. 

The VT-d interrupt-remapping architecture addresses this 
problem by redefining the interrupt-message format. The 
new interrupt message continues to be a DMA write 
request, but the write request itself contains only a 
“message identifier” and not the actual interrupt attributes. 
The write request, like any DMA request, specifies the 
requester-id of the hardware function generating the 
interrupt.  

DMA write requests identified as interrupt requests by the 
hardware are subject to interrupt remapping. The 
requestor-id of interrupt requests is remapped through the 
table structure. Each entry in the interrupt-remapping table 
corresponds to a unique interrupt message identifier from 
a device and includes all the necessary interrupt attributes 
(such as destination processor, vector, delivery mode, 
etc.). The architecture supports remapping interrupt 
messages from all sources including I/O interrupt 
controllers (IOAPICs), and all flavors of MSI and MSI-X 
interrupts defined in the PCI specifications. 

Software Usages of DMA and Interrupt 
Remapping 
The VT-d architecture enables DMA and interrupt 
requests from an I/O device to be isolated to its assigned 
protection domain. This capability makes possible a 
number of usages: 

• Remapping for legacy guests: In this usage an I/O 
device is assigned directly to a VM running a legacy 
(virtualization unaware) environment. Since the guest 
OS has the guest-physical view of memory in this 
usage, the VMM programs the DMA remapping 
structures for the I/O device to support appropriate 
GPA to HPA mappings. Similarly, the VMM may 
program the interrupt-remapping structures to enable 
the interrupt requests from the I/O device to target the 
physical CPUs running the appropriate virtual CPUs 
of the legacy VM.  

• Remapping for IOMMU-aware guests: An OS may 
be capable of using DMA and interrupt remapping 
hardware to improve its OS reliability or for handling 
specific I/O-device limitations. When such an OS is 
running within a VM, the VMM may expose virtual 
(emulated or paravirtualized) remapping hardware to 
the VM. The OS may create one or more protection 
domains each with its own DMA Virtual Address 
(DVA) space and program the virtual remapping 
hardware structures to support DVA to Guest 
Physical Address (GPA) mappings. The VMM must 
virtualize the remapping hardware by intercepting 
guest accesses to the virtual hardware and shadowing 
the virtual remapping structures to provide the 
physical hardware with structures for DVA to HPA 
mappings. Similar page table shadowing techniques 
are commonly used by the VMM for CPU MMU 
virtualization. 

Hardware Caching and Invalidation 
Architecture 
To improve DMA and interrupt-remapping performance, 
the VT-d architecture allows hardware implementations to 
cache frequently used remapping-structure entries. 
Specifically, the following architectural caching constructs 
are defined: 

• Context Cache: Caches frequently used context 
entries that map devices to protection domains.  

• PDE (Page Directory Entry) Cache: Caches 
frequently used page-directory entries encountered by 
hardware during page walks. 

• IOTLB (I/O Translation Look-aside Buffer): Caches 
frequently used effective translations (results of the 
page walk). 
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• Interrupt Entry Cache: Caches frequently used 
interrupt-remapping table entries. 

These caching structures are fully managed by the 
hardware. When updating the remapping structures, the 
software is responsible for maintaining the consistency of 
these caches by invalidating any stale entries in the 
caches. VT-d architecture defines the following 
invalidation options: 

• Synchronous Invalidation: The synchronous 
invalidation interface uses a set of memory-mapped 
registers for software to request invalidations and to 
poll for invalidation completions. 

• Queued Invalidation: The queued-invalidation 
interface uses a memory-resident command queue for 
software to queue-invalidation requests. Software 
synchronizes invalidation completions with hardware 
by submitting an invalidation-wait command to the 
command queue. Hardware guarantees that all 
invalidation requests received before an invalidation-
wait command are completed before completing the 
invalidation-wait command. Hardware signals the 
invalidation-wait command completion either through 
an interrupt or by coherently writing a software-
specified memory location. The queued-invalidation 
interface enables usages where software can batch 
invalidation requests. 

Scaling Address Translation Caches 
Caching of the remapping structures enables hardware to 
minimize the DMA translation overhead that may 
otherwise be incurred when accessing the memory-
resident translation structures. One of the challenges for 
DMA-remapping hardware implementations is to 
efficiently scale its hardware caching structures. Unlike 
CPU TLBs that support accesses from a CPU that is 
typically running one thread at a time, the DMA-
remapping caches handle simultaneous DMA accesses 
from multiple devices, and often multiple DMA streams 
from a device.  

This difference makes sizing the IOTLBs in DMA-
remapping hardware implementations challenging, 
especially when the hardware design is re-used across a 
wide range of platform configurations. An approach to 
scaling the IOTLBs is to enable I/O devices to participate 
in DMA remapping by requesting translations for its own 
memory accesses from the DMA-remapping hardware and 
caching these translations locally on the I/O device in a 
Device-IOTLB.  

To facilitate scaling of address translation caches, PCI 
Express* protocol extensions (referred to as Address 
Translation Services (ATS)) [22] are being standardized 
by the PCI Special Interest Group (PCI-SIG) [21]. ATS 

consist of a set of PCI transactions that allow the 
optimization of VT-d address translations. These 
extensions enable I/O devices to request translations from 
the root complex and for the root complex to return 
responses for each translation request. I/O devices may 
cache the returned translations in its local Device-IOTLBs 
and indicate if a DMA request is using un-translated 
address or translated address from its Device-IOTLB. To 
support usages where software may dynamically modify 
the translations, the ATS protocol extensions enable the 
root complex to request invalidations of translations 
cached in the Device-IOTLB of an I/O device, and for the 
I/O devices to return responses indicating when an 
invalidation request is completed. 

VT-d architecture supports ATS protocol extensions and 
enables software to control (through the device-mapping 
structures) if an I/O device can issue these transactions. 
For DMA requests indicating translated addresses from 
allowed devices, VT-d hardware bypasses the DMA-
address translation. 

I/O devices may implement Device-IOTLBs and support 
these protocol extensions to minimize performance 
dependencies on the DMA-remapping caching resources 
in the platform. However, to preserve the security, 
isolation, and reliability benefits of DMA remapping, 
device implementations must ensure that only translation 
responses from the root complex cause entries to be 
inserted into the Device IOTLB.  

Handling Remapping Errors 
Any errors or permission violations detected as part of 
remapping a DMA request are treated as a remapping 
fault. Unlike CPU page faults, which are restart-able at 
instruction boundaries, DMA-remapping faults are not 
restart-able due to the posted nature of PCI transactions. 
Any DMA write request that generates a fault is blocked 
by the remapping hardware, and the DMA read requests 
return an error to the device in the read response. 
Hardware logs detail DMA requests that cause remapping 
faults and use a fault event (interrupt) to inform software 
about such faults. For devices that explicitly request 
translations, an error detected while processing the 
translation request is not treated as a DMA-remapping 
fault, but is merely conveyed to the device in the 
translation response. This enables such devices to support 
device-specific demand page faulting. Demand page 
faulting is beneficial for devices (such as graphics 
adapters) with large DMA footprints, enabling software to 
demand pin the DMA buffers. 

FUTURE HARDWARE SUPPORT 
While VT-d enables the direct assignment of devices to 
guest VMs, it does not directly facilitate the efficient 
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sharing of devices across multiple guest VMs. Such 
efficient sharing is not feasible without fundamental 
changes in the way that devices present their resources to 
the platform. Further work is being done in the PCI-SIG 
[21] [22] to enhance the PCI Express* specifications to 
enable devices to be shared.  

Briefly, these extensions enable PCI Express devices to 
support multiple virtual functions, each of which can be 
discovered, configured, and managed. This allows the 
direct assignment of a virtual function to a VM using  
VT-d, thus allowing a single physical device to be 
sharable among multiple VMs.  

The importance and applicability of these sharable PCI 
Express devices may be largely dependent upon the 
performance requirements, usage model, and market 
segment in which they may be deployed. 

CONCLUSION 
The virtualization of I/O resources is an important step 
toward enabling a significant set of emerging usage 
models in the data center, the enterprise, and the home. 
VT-d support on Intel platforms provides the capability to 
ensure improved isolation of I/O resources for greater 
reliability, security, and availability.  

Specifically, VT-d supports the remapping of I/O DMA 
transfers and device-generated interrupts. The architecture 
of VT-d provides the flexibility to support multiple usage 
models that may run un-modified, special-purpose, or 
“virtualization aware” guest OSs. The VT-d hardware 
capabilities for I/O virtualization complement the existing 
Intel VT capability to virtualize processor and memory 
resources. Together, this roadmap of VT technologies 
offers a complete solution to provide full hardware 
support for the virtualization of Intel platforms. 

Ongoing and future developments within the virtualization 
hardware and software communities will build upon VT-d 
to ensure that the requirements for sharing, security, 
performance, and scalability are being met. I/O devices 
will become more aware of the existence of VT-d to 
ensure efficient caching and consistency mechanisms to 
enhance their performance. Given the protection provided 
by VT-d, future I/O devices will emerge that are sharable 
among multiple guest OSs. With VT-d, software 
developers can develop and evolve their architectures that 
provide fully protected sharing of I/O resources that are 
highly available, provide high performance, and scale to 
increasing I/O demands. 
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system with an enabled Intel® processor, BIOS, virtual 
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performance or other benefits will vary depending on 
hardware and software configurations and may require a 
BIOS update.  Software applications may not be 
compatible with all operating systems.  Please check with 
your application vendor.  
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