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Abstract—In virtual machine (VM) systems, with the increase
in the number of VMs and the demands of applications, the main
memory is becoming a bottleneck of application performance.
To improve paging performance for memory-intensive or I/O-
intensive workloads, we propose the hypervisor REMOte disk
CAche (REMOCA), which allows a virtual machine to use
the memory resources on other physical machines as its cache
between its virtual memory and virtual disk devices.

The goal of REMOCA is to reduce disk accesses, which is much
slower than transferring memory pages over modern interconnect
networks. As a result, the average disk I/O latency can be
improved. REMOCA is implemented within the hypervisor, by
intercepting guest events such as page evictions and disk accesses.
This design is transparent to the applications, and is compati-
ble with existing techniques like ballooning and ghost buffer.
Moreover, a combination of them can provide a more flexible
resource management policy. Our experimental results show
that REMOCA can efficiently alleviate the impact of thrashing
behavior, and also significantly improve the performance for real-
world I/O intensive applications.

I. INTRODUCTION

Virtualization can provide efficient resource encapsulation,

hardware independency and easy manageability. Nowadays,

it is widely used in data centers to consolidate multiple

workloads into a single physical platform [1], [2]. In a

virtual machine system, memory is partitioned among Virtual

Machines (VMs). With the increase in number of VMs and

the demands of applications, the main memory will become

an extremely limited resource.

Various techniques have been developed to improve memory

resource efficiency in virtual machine systems. For example,

memory sharing [3] can discover and share identical memory

pages in a physical machine, and thus reduce the total memory

footprint; ballooning [1] allows the hypervisor (also known

as virtual machine monitor, VMM) to dynamically adjust

memory allocation among multiple VMs. However, none of

these methods help when all the VMs are in tight memory

situations. In such circumstance, the VM will have no choice

but to page to its virtual disks, which may result in severe

performance degradation [4].

It has been observed that performance thrashing on many

server systems comes from bursty requests [5], [6], that is,

memory requirements proliferate only for a short period of

time. In these circumstances, it is unnecessary to reconfigure

the physical system with larger memory, or to migrate the

entire virtual machine to another host. To maintain the service

locality and low cost, it is desirable to temporarily “borrow”

some memory from other physical machines to overcome the

burst.

In order to alleviate thrashing behavior for virtual machines,

this paper proposes REMOCA, or hypervisor remote disk
cache. It allows a virtual machine to transparently use the

memory resources on other physical machines to form a cache

between its virtual memory and virtual disk devices. A paging

request from a VM is intercepted by the hypervisor, and

is preferably satisfied from the remote cache. The goal of

REMOCA is to reduce disk accesses, whose latencies are 1

to 3 magnitudes higher than transferring memory pages over

modern interconnect networks.
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Fig. 1. Round-trip latency comparison between disk reads and
network transfers.

Figure 1 compares the round-trip latency of requesting a

block of contiguous data from the disk (disk reads) and over

1 Gbps Ethernet using TCP connections (tcp 1giga). When

the data size is 4KB, the latency of 1 Gbps Ethernet is about

2 magnitudes lower than the disk. The access latency for the

disk reads does not change notably when the requesting size

increases because the disk access latency is dominated by the

seek time. Also, the disk controller can optimize sequential

accesses through prefetching. On the contrary, the latency of

network transfers is independent of locations. Thus it increases

linearly with the requested data size. As a result, the gap drops

to 1 magnitude when the data size reaches 64 KB (16 pages).

To separate the latency of data copy, protocol processing and

the interconnection, we also measured the results of TCP

latency over loopback interface (tcp lo) and the latency of

memory copy (memcpy). The results also show that both of

them increase linearly with the size of data.

Our work inherits the ideas of previous studies on remote
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paging in multicomputer systems [7], [8]. Adopting remote

paging into a virtual machine environment introduces new

challenges because there are two independent resource man-

agement layers. To avoid unpredictable interactions with the

guest OS, we choose a cache design rather than introducing

another level of paging in the hypervisor. We also use the

exclusive cache policy [9], [10] to improve the efficiency of

our hypervisor remote disk cache — REMOCA only caches

the pages that are evicted from the guest OS.

Virtual machine systems can benefit from REMOCA in

many ways. First, it speeds up the VM disk I/O so that

the impact of thrashing behavior can be alleviated. Second,

some I/O intensive applications can also benefit from remote

caching, resulting in a better-than-native performance. Third, it

can work together with existing techniques such as ballooning,

ghost buffer [11], [12] and miss ratio curve prediction [4],

providing a more flexible resource management policy. Lastly,

our approach is cost efficient — it neither relies on specialized

interconnections nor requires the remote memory server to

have strong computation power.

II. THE DESIGN OF REMOCA

In the following section, we will present the basic design of

REMOCA, then describe our choices on the cache organiza-

tion, the placement policy and the write policy. We will also

enumerate possible design options of the memory server, and

illustrate how the client VMM and the memory server interact

through the REMOCA protocols.

A. Overview

In REMOCA, the VMM maintains a fast disk cache on re-

mote machines, i.e. memory servers. The cache architecturally

lies between the virtual machine’s memory and its virtual

storage devices. Since most guest OSes also have the ability

to cache recently accessed disk blocks in their own memory

(known as guest page cache), our remote disk cache can be

considered as a second level cache in the VM’s virtual storage

hierarchy.

When a disk access misses in the guest page cache, the

guest OS will try to swap-in the requested disk blocks. A

page swap in the guest OS will result in disk I/Os that will be

intercepted by the VMM. If a disk I/O hits our remote cache,

it is directly satisfied from the remote memory server, which

provides lower latency than a real disk access. In this way,

a new level of caching is transparently added into the virtual

machine’s memory hierarchy.

Figure 2 illustrates this design. Note that the hypervisor only

manages the cache index structures on the local machine, while

the actual cache content resides remotely. Although the general

idea is simple, REMOCA has some unique characteristics that

may lead to special design choices:

Exclusive cache placement: the guest OS will do its

own page cache management as well. Caching a block that

has already been cached in the guest memory is inefficient.

However, achieving exclusiveness in REMOCA is complicated

because the behavior of guest page cache is a black box to
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(indices)
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Memory 
Service

Page Pool

Local Machine Memory Server

Disk I/O

Disk I/O
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Fig. 2. The basic design of REMOCA. The shaded portion shows the
key components. It consists of a local module running in the client
VMM and a memory service running on another machine.

the hypervisor. We will discuss the exclusive cache placement

further in Section II-C.

Load cache content from the guest memory: in conven-

tional cache hierarchy, data usually enters the cache from the

lower-level storage. But in REMOCA, loading cache content

from the disk is very impractical since it introduces extra I/O

overheads. Therefore, we always load cache data from the

upper-level storage (the guest page cache).

Use write-through to enforce data persistence: the distri-

bution of disk cache on different physical machines introduces

reliability risk. In general cases, REMOCA uses write-through

policy to ensure data persistence and provide fault tolerance.

In Section II-D, we will further discuss trade-offs on write

policies.

B. Cache Organization

A cache block in REMOCA is identified by a block number
( bno), which consists of a physical device id and a sector

number. REMOCA always manages its cache block in a page

granularity. Any fragmented or misaligned disk I/Os from the

guest OS are ignored by REMOCA and passed to the disk.

In our remote disk cache, all cache blocks are organized

into a queue. A newly admitted disk block is appended to

the queue tail. When the cache gets full, the victim block is

selected from the head. Because the guest OS will append the

newly accessed block into its own LRU queue, we also remove

a block from our remote cache when it is hit. In this way, our

hypervisor remote disk cache and the guest page cache can

form a unified LRU cache.

C. Exclusive Cache Placement

Previous studies [9], [10] show that the exclusive cache

design can provide a better hit ratio for lower-level storage

caches. To make the remote cache more efficient, we adopt

the exclusive cache design: REMOCA admits a disk block

into the remote cache when it is evicted from the guest page

cache.

Unfortunately, in a virtual machine environment, it is dif-

ficult to detect page cache evictions of the guest OS in a

transparent way. When a page in guest’s page cache is to be
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evicted, the guest OS just simply modifies its internal data

structures (like linking the page descriptor to system’s free

list), leaving the VMM uninformed. Given the above problem,

we employ the idea described by Lu and Shen [4], which

modifies the guest OS to explicitly notify the hypervisor when

a page is evicted from the guest page cache (before reuse).

We also maintain an one-to-one mapping between memory

pages and disk locations in the VMM, which is queried upon

page eviction to obtain the associated block number from an

evicting page number.

D. Write Policy

The distribution of the disk cache also raises reliability or

fault-tolerance problems. A faulty memory server can cause

data losses. Previous work proposes several solutions [8], [13],

but they are designed for clusters and too expensive in our

environment.

We address the problem by applying write-through policy

on the disk cache. The VMM commits an intercepted write

operation to the physical device in parallel with transferring

its content to the remote cache. The guest is notified only

after the content is actually written to the the physical device

to ensure data persistency. Write-through policy does not

introduce additional disk access latency, since the transfer to

the remote cache is fully overlapped with the normal disk

write.

With write-through policy, of course, it is impossible to

improve the latency of disk writes by using remote cache.

This is not a problem since in most guest OSes, disk writes

usually overlap with the computation and will not lead to guest

stalls. For example, the Linux performs write-back of its in-

memory page cache in a background task. In contrast, disk

reads usually stall the application because applications cannot

continue without the requested data. The fact that most I/O

intensive applications are bounded by disk reads rather than

writes means that improving the latency of disk reads is more

crucial in our design.

E. Memory Server Design

The memory server is in charge of storing block contents

of the cache, and responding to cache management requests

from the client VMM. The memory for storing cache content

is called page pool. A page in the page pool is indexed by

a block number (bno) specified by the client VMM at cache

admission. A memory server can serve multiple client VMMs

in separate sessions. And we assume that a dedicated page

pool is allocated for each client.

The architecture of memory server is quite flexible. It can be

1) a dedicated remote machine running the memory service;

or 2) a symmetrical remote machine running both the memory

service and other virtual machines (Figure 3).

The dedicated model is simple, and can provide best service

response time. In the case that large memory requirements are

temporary, this model is preferable to live migration because

it is more cost-efficient: the memory server is not required to

have strong computation power to perform the computation

Hardware

VMM

Guest OS

Hardware

OS

MS

Hardware

VMM

Guest OS

Hardware

VMM

Guest OS

MS MS

1) dedicated 2) symmetrical

Fig. 3. Different architectures of the memory server. MS stands
for memory service. Gray boxes and arrows show the corresponding
REMOCA module in the client VMM

of the client node. In Section IV-C, we will investigate

how a dedicated memory server can speed up I/O intensive

applications and thrashing memory intensive applications.

The symmetrical model is useful to exploit idle memory

resources in a virtualization cluster. It can be combined with

ballooning to provide a more flexible quality of services

(QoS) both within and across physical machines. A drawback

of this model is that the memory server’s response time

will become unpredictable due to the scheduling of other

concurrent services.

F. Client-Server Interactions

In this subsection, we will describe the REMOCA protocol

between the client VMM and the memory server. We don’t

give a full protocol description, but illustrate interaction in

response to key events.

Cache resizing: to make the protocol work, the client

VMM and the memory server should make an agreement on

the cache size. This is done by sending a SETSIZE(npages)

message to the server. If the memory server could not allocate

sufficient pages for the page pool, it will reply with an error so

that the client can either reduce the requested size or contact

another server. Client VMMs are also allowed to dynamically

expand or shrink the remote cache by sending a SETSIZE

message at any time.

Cache admission / update: cache admission is triggered

by guest evictions. After setting up the local index structure,

the client VMM sends a SENDPAGE(bno, NIL, data) mes-

sage to the server, where bno is the key to the block including

the device id and the sector number, and data is the block

content (in a page size). Upon receiving the message, the

memory server allocates a new page from the client’s free

page pool, records bno as its key, then copies block data into

that page. If the block is already cached in the page pool

(this may happen when our cache is not strictly exclusive), its

content is updated.

Cache read hit: when a disk read for block bno hits the

remote cache, the VMM will allocate a request id (reqid)

to identify the request, then send a REQUEST(bno, reqid)

message to the server. The server looks up bno in its page

pool, retrieves the page content, and replies to the client with

a SENDPAGE(bno, reqid, data) message. Upon receiving the

reply, the client VMM finds the pending request according to

reqid, verifies bno, copies data to the specified guest buffer

and acknowledges the I/O request. After that, the VMM moves
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bno’s cache index to the head of the queue, making it next to

discard.
On rare occasions, the server may reply with an ERROR

(reqid) message, indicating that the requested block cannot

be found. If the client VMM gets this message, it will delete

the orphaned cache index and fall back to normal disk I/O.

Note that we assume the connection between the VMM and

the memory server is reliable and ordered so that messages

seldom get lost. The server does not reply to SENDPAGE

or DISCARD (describe later) requests. Since we currently

use write-through, errors happened to them can always be

recovered in the REQUEST stage.
Cache eviction: an eviction on the remote cache happens

when: 1) trying to admit a new cache block and the queue is

full, so that the block at the queue head has to be evicted; or

2) an access that hits the remote cache, so we have to discard

the cached version to keep the cache exclusive. In either cases,

the VMM will send a DISCARD(bno) message to the server.

The server will locate the page identified by bno and return it

to the free pool.
Under this protocol, the cache size, cache placement and

replacement policies are completely controlled by the client

VMM. Write-back policy can also be implemented by sending

an additional REQUEST message before discarding the block.

III. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of REMOCA on the Xen

hypervisor [14] (version 3.1.0). A virtual machine in Xen

is called a domain (DomU). There is a special domain that

provides I/O services for other domains, namely domain 0

(Dom0). Our prototype consists of two modules: the local
module and the memory service module.

Since every disk access from DomU passes through the

back-end block driver in the Dom0 (block-be in Figure 4),

we extend it to implement the local module. Important data

structures maintained in the module include: a cached indices

list, which keeps track of all the disk blocks currently cached

by the remote machine; a hash map, which supports fast

looking up for a block in the cache indices; a tracking table

(p2s) and a reverse mapping table (s2p), which are consulted

upon page evictions; and a request buffer, which is used to

queue and track pending requests to the memory server.

Dom0

Xen hypervisor

DomU

page 
reclaim 
routine

notifier

block 
front-end

block-be

notifier-be

cache 
indices

tracking 
tables

client socketNB

Fig. 4. Structure of the local module in the REMOCA prototype.
The shaded areas show our implementation. The arrow indicates the
control flow or data flow between each component.

A. Handling Guest Evictions

We modify the page reclaim routine in the DomU to

implement the eviction notification. We set up a shared ring

buffer between each DomU and the Dom0. An event channel is

also established for the notification. This architecture follows

the “split device model” [15] of other para-virtualized device

drivers in Xen. We also allocate a pool of pages in the

DomU, namely the notification buffer (NB in Figure 4). The

notification buffer is shared with Dom0 through the standard

grant table mechanism in Xen and is mapped by the Dom0

once at guest startup.

When the page reclaim routine in the DomU recycles a

page in the guest page cache, it allocates a page from NB,

and copies the content of the page to be evicted into it. Then,

the page’s machine frame number is put into an entry in the

shared ring buffer, together with the handle of the allocated

NB page. The notifier back-end (notifier-be in Figure 4) in

the Dom0 is notified through the event channel after a batch

of pages are processed. The back-end driver processes page

evictions in the ring buffer asynchronously in a separate thread.

It sends block contents to the memory server using the copies

in the shared NB pages and clears tracking table entries as

necessary.

B. Cache Management

Each I/O page passed to the block back-end driver is filtered

through our local module. For a read, if the requested block

hits our cache, we allocate an entry from the request buffer

and send the request immediately. We receive server responses

in a separate thread. When a response arrives, we look up

the request buffer to find the corresponding request. Then the

page data is assembled directly into the I/O page provided

by the DomU. After all the segments of a read request are

processed, either through our remote cache or through real

disk I/Os, we acknowledge the block front-end driver using the

original mechanism. Since we use the write-through policy, a

write request is directly passed to the block layer. Finally, for

either read or write, the tracking table is updated for every I/O

segment.

Our implementation of memory service module is a user

level process which uses mmap() and mlock() system calls

to allocate pinned memory from the OS. The service module

also maintains a hash table to support fast lookup of block

data for a block number. We use TCP connection between the

memory service and the local module. Requests and responses

are batched to improve the service throughput.

C. Memory Overhead

The memory overhead of our implementation is low. On a

64-bit machine, the sizes of each cache index and the tracking

table entry (plus a reverse mapping hash table) are 40 bytes

and 32 bytes respectively. For a machine with 1GB physical

memory and 1GB remote cache, these data structures consume

about 18MB of the local machine memory (assume 4KB page

size). The notification buffer, the shared ring buffer and the

request buffer use additional (but fixed amount of) pages,
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Fig. 5. Mean access latency for each read request of the microbenchmarks.

depending on their capacities. In our implementation, they are

about 3MB for each domain.

IV. EVALUATION

In this section, we perform experimental evaluations on our

implementation of the REMOCA prototype. The goals of our

evaluation are 1) to see the potential improvement on the disk

access latency using our prototype, 2) to analyze factors that

may affect the efficiency of the remote cache, 3) to validate

our design of exclusive cache management, and 4) to show

how REMOCA can improve the performance for realistic

applications.

A. Experimental Platform

Our experimental platform consists of two PCs. One runs

the client VMM and the other runs the memory service. Each

of the PCs has an Intel Core 2 Duo 6300 1.86 GHz processor,

2 GB of main memory and a Seagate ST3160811AS 160

GBytes SATA hard disk. We install Xen-3.1.0 on the local

machine, patched with our local module implementation. The

driver domain (Dom0) is configured with 1024 MB of DRAM.

The Dom0, the DomU and the remote memory server all run

SUSE Linux Enterprise Server 10 Linux distribution, with

kernel version 2.6.18. We run the Dom0 and the DomU on

different processor cores. The two machines are connected to

a D-Link DES-1016D 1 Gbps switch by Realtek RTL8168B

network adaptors on both ends. The disk access latency and

the network latency of the platform are shown in Figure 1.

B. Access Latency Analysis

In this subsection, we will study how REMOCA can im-

prove the average disk access latency for a virtual machine,

and discuss factors that may affect its efficiency. We will also

validate our exclusive cache design as described in Section

II-C by measuring the read hit ratios of each benchmark. Our

evaluation is based on 5 microbenchmarks, which consists of

4 pattern-access tests for guest buffer cache and a quicksort
program to test the guest swap cache.

In the pattern access benchmarks, we read 12288 MB of

data from a 1536 MB dataset stored in a disk file. The

dataset is divided into many records of the same size, which is

configurable. We run the guest OS with 256 MB of memory.

This configuration is far less than the total data size of each

benchmark, leading guest to initiate paging. Four patterns are

chosen to access the records within the dataset, according to

[4], [9]:

• sequential (seq) — The records are scanned sequentially,

from the first to the last. If the amount to read exceeds

the size of the dataset, we will wrap to the first record

after the last one is scanned.

• random (rand) — We select a record randomly, and all

the records in the dataset have a uniform probability to

be chosen.

• zipf — We randomly select the record with a Zipf

distribution. That is, record i is selected with a probability

proportional to 1/iα, where α = 1.0 .

• class — We select the records randomly. The records in

the dataset are divided into two classes: first 1/10 of them

are 10 times more likely to be selected than the others.

Within each record, we scan through every word sequen-

tially. We assume that the entire dataset is stored contiguously

on the physical disk layout. By default, we set the record size

to 96 KB (24 pages). A smaller record size can result in a

wider latency gap (see Figure 6).

The quicksort (qsort) benchmark reads 768 MB of prepared

random integers from the disk, then sorts them in its heap,

using qsort() function provided by the standard C library.

When the guest memory is lower than 768 MB, it will suffer

severe thrashing behavior by accessing the swap partition

constantly.

As described in Section II, the principle of REMOCA is to

reduce disk accesses by transferring memory pages through

the network. Therefore, the ability of which REMOCA can

improve the average disk access latency of the guest OS

depends on two factors: 1) the latency gap between the disk

and the network; 2) the number of disk I/Os that can be

diverted to the remote cache. The latter is determined by the

read hit ratio of our remote cache. The former, however, is

decided by both the underlying hardware and the application

behavior.

Figure 5 shows DomU’s average read latency observed in

the back-end driver. Each latency is a combination of both

remote cache accesses and real disk accesses. We vary the size

of the remote disk cache from 256 MB to 1536 MB. A zero

remote cache size means that REMOCA is disabled, which

is our baseline case. And the “1536 MB cache” case can be
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considered as infinite cache size, since it can accommodate the

entire dataset for every benchmark. Because REMOCA does

not improve disk writes, we will focus on the read latency in

the following discussion.

1) The latency gap: We study the latency gap of each

microbenchmark by examining two extreme cases: the baseline

case and the infinite cache case. In Figure 5, the latency of the

baseline case (without the remote cache) varies for different

microbenchmarks. For seq, the latency is 1.8 ms, which is far

below the measured 10 ms in Figure 1. The latencies for rand,

zipf and class are roughly the same, which are around 6.7 ms.

And for qsort, the value is 9.5 ms.

The reason for the above results is that the disk controller

can optimize sequential accesses by asynchronously prefetch-

ing contiguous blocks into its internal buffer. Also, the buffer

cache management algorithm in Linux performs read-ahead.

The seq benchmark walks through the entire dataset sequen-

tially, thus the effect of these optimizations is maximized,

leaving little room for further optimization through REMOCA.

Actually, in some extreme case like seq, a hit on the remote

cache even has negative effects on the mean latency due to the

cache management overhead. Such slowdowns can be avoided

by disabling REMOCA when the sequential access pattern is

observed.

The rand, zipf and class benchmarks read individual records

sequentially, so that the disk latency is determined by the

record size. Also, due to concurrent requests and disk schedul-

ing, the access latencies are lower than the round-trip latency

shown in Figure 1. The amount of sequential accesses in the

qsort benchmark, however, is insignificant. This is because for

a swap cache, the guest OS only reloads pages when they are

to be accessed, and the quicksort algorithm does not access

the memory in a sequential manner.

To validate our analysis, we run the pattern access bench-

marks in various record sizes and see how the latency speedup

can be affected by the amount of sequential portion in a

workload. As shown in Figure 6, the speedup drops for all

benchmarks when the record size increases. In summary, the

latency gap between accessing the remote cache and the disk

can affect the efficiency of our remote cache. REMOCA

is more useful when the sequential access pattern is not

dominant.
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2) Cache hit ratio: Another factor that has an effect on the

disk access latency is the cache hit ratio. The hit ratio, in turn,

is determined by the cache size, the cache management policy

and the application behavior.

The read hit ratios of our microbenchmarks are shown

in Figure 7. In general, the hit ratio increases with the

cache size. By comparing it with Figure 5, we can see that

the improvement of the hit ratio is directly mapped to the

reduction in the combined access latency, except for the seq
benchmark. Note that for clarity, hits on guest OSes’ system

partition are not included in Figure 7. This is why we see

improvements in latency even when the hit ratio is zero.
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Fig. 7. The corresponding read hit ratio on the remote cache. Note
that the result shows only cache hits on the testing partition (i.e. hits
on unrelated partitions are not counted).

To see the impact of application behavior on the read hit

ratio, we examine the curve of each benchmark individually.

The seq exhibits a zero hit ratio when the cache size is

smaller than 896 MB because a cached block has always been

discarded from the LRU queue before it is accessed again,

unless the cache is large enough to hold the entire dataset. In

the figure, the hit ratio starts increasing rapidly at 1096 MB

(before our cache can hold the entire dataset, which is at about

1280 MB) because the LRU algorithm used by the guest page

cache is not perfect.

The curve of rand is linear since its access pattern is evenly

distributed. The curves for zipf and class benchmarks are alike.

They both encounter diminishing returns when the cache size

goes larger. This is because the frequently accessed blocks

are typically cached in the guest page cache. A larger remote

cache only caches the blocks that are less likely to be accessed.

For all the four pattern access benchmarks, the hit ratio

gets saturated when the cache size is slightly larger than 1280

MB. As mentioned in Section II-C, the guest page cache

and our exclusive remote cache form a unified LRU cache.

Ideally, a remote cache of 1280 MB, along with the 256

MB guest memory, is sufficient to hold the entire dataset of

1536 MB for these workloads. But some service processes

and shared libraries in the guest OS also occupy some space
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Fig. 8. Speedup for realistic applications. The histogram shows the relative performance gain with REMOCA, under various memory
pressures.

in the composed cache, making the saturation point a little

larger. Note that the hit ratios at the saturate point are not

simply 100% because of cold misses.

Finally, we inspect the effect of REMOCA on the guest

swap cache by examining the hit ratio curve of the qsort
benchmark. The curve of qsort is higher than the others for two

reasons. First, the dataset is relatively small (768 MB). Second,

the guest OS seldom reads a swap block before it is written,

so that there is no cold misses on the remote cache. Also, a

small remote cache of 256 MB can significantly improve the

average read latency for qsort (see Figure 5). This is because

the access pattern of qsort has a better locality on the remote

cache. The locality of seq and class is lower since their sets of

“hot” blocks are fixed and are constantly cached by the guest

OS.

C. Speedup of Real Applications

In this subsection, we evaluate how REMOCA can speedup

some realistic data-intensive applications. Our benchmarks

include both memory intensive and I/O intensive applications:

• SPEC CPU2006 — We select 3 benchmarks from the

SPEC CPU2006 benchmark suite [16], which are perl-
bench, bzip2 and gcc. We choose the three benchmarks

because they are both CPU intensive and memory in-

tensive. Their maximum working set sizes are 591 MB,

873 MB and 955 MB respectively [17]. When the guest

physical memory is low, they will begin thrashing and

paging to the swap partition.

• dbench — dbench is a file system benchmark simulating

loads on a network file server [18]. It runs each client

with the workload traced from the NetBench suite. In

our experiments, we run dbench with 80 clients. The total

size of the workload is about 3.6 GB.

• TPC-C — We choose an open source implementation

of the TPC-C online transaction processing benchmark

(tpcc-uva [19]). TPC-C simulates a population of terminal

operators executing Order-Entry transactions against a

database. In our experiments, we run the benchmark with

32 warehouses, and the size of the database is 3.2 GB.

In this experiment, we fix the size of the remote cache to

1024 MB but vary the size of the guest memory from 256 MB

to 1024 MB. Our intention is to see how these applications

behave under different memory pressures and how REMOCA

can improve their performance in different circumstances.

The corresponding relative speedups are shown in Figure

8. Because the principle of REMOCA is to reduce the disk

access latency, its potential performance improvement will

depend on how much time the application is stalled by disk

I/Os. In the three SPEC CPU benchmarks, there is little

notable I/O overhead unless the guest memory is insufficient

to accommodate the entire dataset. When the guest does

not thrash (column “1024”), the performance ratios for the

baseline case and REMOCA are very close, and there is no

speedup.

When the available memory of the guest OS falls below

the workload size, all of the applications suffer performance

degradation. In these cases, REMOCA delivers performance

improvements. The amount of improvements depends on the

amount of I/O that imposed by thrashing, which in turn

depends on the application’s behavior.

Memory-bounded perlbench: the largest workload in

perlbench is a “diffmail” workload. It compares items in a

591 MB dataset pair by pair. The algorithm scans through

the entire dataset again and again, thus the working set size

is very large and the working set itself changes rapidly.

Actually, this application is memory-bounded since it does

little computation. When the memory is tight, this behavior

results in considerable page swaps. REMOCA can efficiently

alleviate the thrashing behavior by caching the entire dataset in

the remote memory. Figure 8 shows that REMOCA provides

a 3x speedup when the guest memory is as low as 256 MB.

CPU-bounded bzip2 and gcc: in contrast, the locality of

bzip2 and gcc is much better. They work on a small portion

of the input at a time, which can be efficiently cached by the

guest page cache. For these two CPU-bounded applications,

REMOCA still improves their performance by more than 25%

at 256 MB.

I/O-bounded dbench and tpcc: the dbench and the tpcc
benchmark are I/O bounded, so that their speedups will mainly

be determined by the amount of disk reads that are missed in

the guest page cache but cached by REMOCA. This portion

will increase when the guest memory is smaller. Although the

datasets of dbench and tpcc are too large to be entirely cached

by REMOCA, the performance improvements are significant.
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In the tpcc benchmark, for example, REMOCA increases the

service throughput by a factor of 1.5 for a guest OS with 1 GB

memory, and doubles the throughput when the guest memory

is lower than 768 MB.

TABLE I
SPEEDUPS IN COMPARISON WITH THE NATIVE RESULTS

Guest Memory dbench (MB/s) tpcc (tpmC)
(MB) Native Speedup Native Speedup

1024 224.13 1.00 274.37 1.48
768 194.57 1.05 225.12 1.79
512 148.42 1.12 189.90 2.08
384 58.73 1.76 161.10 2.32
256 14.57 3.33 123.13 2.36

Some previous work reports that in Xen, the disk I/O

performance for a guest domain basically does not drop to

less than 90% of the platform’s native performance [14], [15].

This slowdown is far less significant than the speedup provided

by REMOCA in tight memory. We also run the dbench and

the tpcc benchmarks in a native environment (without Xen and

REMOCA). As shown in Table I, REMOCA can also achieve

significant amount of speedup in comparison with the native

results for real-world I/O intensive applications.

D. Management overhead

We measured the CPU overhead for cache management in

our REMOCA prototype with Xenoprof [20] by counting the

“CPU-clock-unhalted” events. Table II shows the percentage

of instruction cycles spent in the local module while running

the dbench benchmark. We can see that the page copying at

guest evictions and the cache lookup operations contribute to

the majority of the overhead. The copying overhead can be

reduced by applying the page exchanging technique available

in Xen, and the cache lookup overhead can be alleviated if we

increase the size of the hash table. Even without optimizations,

the total CPU overhead (about 15.2 %) is acceptable because

the applications are I/O bounded rather than CPU bounded.

TABLE II
CPU OVERHEAD OF THE REMOCA PROTOTYPE

Operations Percentage

Page copying (in guest OS) 5.9481 %
Cache lookup 8.4781 %
Cache append 0.1044 %
Cache delete 0.1590 %
Cache move 0.1287 %
Tracking table operations 0.1116 %
Notification ring processing 0.2777 %

Besides, we observe that the TCP protocol handling and the

network adaptor driver in the Dom0 also impose considerable

CPU overheads (33.67% and 13.63% respectively). How-

ever, these overheads are independent of our implementation.

We believe that the efficiency of REMOCA can be further

improved by using a more intelligent network device and

adopting a lightweight transmission layer protocol.

V. COMPATIBILITY ISSUES

In this section, we analyze the compatibility of REMOCA

with two existing virtual machine techniques: ballooning and

the ghost buffer. We also discuss how to combine REMOCA

with them to provide a more flexible resource management

policy.

Ballooning: ballooning [1] provides an efficient way to

dynamically adjust memory allocation among multiple VMs.

REMOCA is fully compatible with ballooning since it only

changes the path of guest disk accesses, leaving the guest

memory layout untouched.

Obviously, if there is adequate memory on the same physical

machine, ballooning is the top choice to ease memory pressure

for a VM. REMOCA is useful when ballooning is inapplicable,

for example, when the installation of balloon driver in the

guest OS is not allowed, or when the memory allocation

has reached the VM’s upper limit (the configured physical

memory size at VM startup). Additionally, ballooning can help

REMOCA. For example, in the symmetrical model presented

in Section II-E, ballooning can be used to gather idle memory

resources from multiple VMs to form a larger page pool to

serve client VMMs running on other physical machines.

Ghost buffer: ghost buffer [4], [11], [12] is a simulated

buffer with index data structure but no actual page content. It

can be used to predict the VM page miss ratio for memory

sizes beyond its current allocation. Actually, REMOCA is

equivalent to a guest buffer as long as we do not transfer

page contents to the remote server, and always proceed with

disk I/O even on a cache hit.

As we have observed in Section IV, not every application

can take the advantage of the remote cache. Enabling RE-

MOCA for a non-beneficial virtual machine can unnecessarily

impose CPU, memory and network overheads to transfer or

store evicted pages. Ghost buffer provides the flexibility to

predict the cache behavior before we actually allocate memory

pages on the memory server. The client VMM can also use

the predicted cache hit ratio to determine an optimal size of

the remote cache.

VI. RELATED WORK

Our work is inspired by remote paging, which are originally

designed for multicomputers [7], [8], [21]. Remote paging

model can take advantage of the fast interconnection in

multicomputer systems to improve the paging performance on

a node, by using memory on other nodes as a fast backing

storage. Some studies show that remote paging over low

bandwidth interconnections (like ethernet) can speed up the

execution time for real applications as well [7], [13]. With

the ever widening performance gap between switch networks

and magnetic disks, the remote paging model remains a cost

effective way to improve system performance.

As far as we know, MemX [22] is the only work that sup-

ports remote memory utilization in virtual machine systems.

Their idea is to virtualize a volatile block device from the

remote memory and assign it to a VM as its swap partition

(similar to [21]). A significant limitation of this mechanism is
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that it is inapplicable for non-volatile partitions (i.e. buffer

caches), so it is awkward to improve performance for I/O

intensive applications such as OLTP. Also, their approach

lacks of the flexibility to switch on/off or resize when virtual

machines are running.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed hypervisor remote disk cache
(REMOCA), which allows a virtual machine to use the mem-

ory resources on other physical machines as a cache between

its virtual memory and virtual disk devices. REMOCA sup-

ports both normal disk partitions and swap partitions in the

guest OS. We employ exclusive cache management policy to

improve the cache efficiency. The write-through policy is used

to enforce data persistency and provide fault-tolerance. We

also investigate possible design options of the memory server,

and illustrate how the client VMM and the memory server

interact through the REMOCA protocol.

We have implemented the REMOCA prototype in Xen

hypervisor, and performed experimental evaluations on it. We

illustrate how the application behavior, cache size and cache

management policy can affect the efficiency of our remote disk

cache. Our experiments on real-world applications show that

REMOCA can efficiently alleviate the impact of thrashing be-

havior for out-of-core memory intensive workloads. REMOCA

can also deliver significant performance improvement to real-

world I/O intensive applications even in comparison with the

native results.

REMOCA is compatible with existing techniques like bal-

looning and the ghost buffer. Our future direction is to inves-

tigate how the combination of these techniques can provide

a more flexible resource management policy for a virtualized

cluster.
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