
Fast Networking with Socket-Outsourcing in Hosted
Virtual Machine Environments

Hideki Eiraku, Yasushi Shinjo

Department of Computer Science

University of Tsukuba

Tsukuba, Ibaraki 305-8573, Japan

Calton Pu, Younggyun Koh

College of Computing

Georgia Institute of Technology

 Atlanta, GA 30332-0765 USA

Kazuhiko Kato

Department of Computer Science

University of Tsukuba

Tsukuba, Ibaraki 305-8573, Japan

ABSTRACT

This paper proposes a novel method of achieving fast networking

in hosted virtual machine (VM) environments. This method,
called socket-outsourcing, replaces the socket layer in a guest
operating system (OS) with the socket layer of the host OS.
Socket-outsourcing increases network performance by eliminating
duplicate message copying in both the host OS and the guest OS.
Furthermore, socket-outsourcing significantly enhances inter-VM
communication within the same host OS since it enables network
packets to bypass the protocol stack in guest OSes. Socket-
outsourcing was implemented in two representative operating

systems (Linux and NetBSD) and on two virtual machine
monitors (Linux KVM and PansyVM). These virtual machine
monitors provided support for socket-outsourcing through shard
memory, event queues, and VM-specific Remote Procedure Call
between a guest OS and a host OS. The experimental results
revealed that a guest OS outsourcing the socket layer achieved the
same network throughput as a native OS using up to four Gigabit
Ethernet links. Moreover, the benchmark results obtained from an

N-tier Web application that generated a significant amount of
inter-VM communication indicated that socket-outsourcing
improved performance by up to 45 percent compared with
conventional hosted VM environments.

Categories and Subject Descriptors D.4.4

[Operating Systems]: Communications management

General Terms Performance, design

Keywords Virtualization, hosted virtual machine monitors,

host operating systems, guest operating systems,
paravirtualization, outsourcing, socket API

1. INTRODUCTION
Virtual Machine Monitors (VMMs) provide significant

advantages in terms of isolation and portability of applications.
An early classification [8] of VMMs has divided them into two
types: Type I VMMs, which are hypervisor-based VMMs running
on bare hardware such as Xen [9] and VMware ESX Server [25],
and Type II VMMs (also known as hosted VMMs), such as

VMware Workstation [23], Linux KVM [13], and User Mode
Linux (UML) [4]. Compared to Type I VMMs, hosted VMMs
have advantages such as host operating system (OS) reuse, and
OS installation as a normal application program [20], but hosted
VMMs incur a relatively high performance penalty, especially in
I/O processing.

Compared to native operating systems (OSes), there are four main
sources of additional overhead in a guest OS running on a hosted

VMM: (1) heavy costs to capture CPU exceptions including
system calls and page faults, (2) execution of privileged functions
in the guest OS kernel in user mode, (3) duplicated functionality
between a guest OS and a host OS in I/O processing such as
network protocol stacks, and (4) redundant copying of buffers
across multiple user-kernel boundaries. Recent hardware support
for virtualization, such as Intel Virtualization Technology (VT)
and AMD Virtualization (AMD-V), have helped to reduce or

remove sources (1) and (2) of the performance penalty. However,
due to the architecture of hosted VMMs and "inherent"
duplication of functionality between a guest OS and a host OS,
sources (3) and (4) of the performance penalty constitute serious
research challenges that have contributed to the slow adoption of
hosted VMMs. While some advanced hardware, such as Intel VT
for Directed I/O (VT-d) has helped to remove these performance
penalty sources in Type-I VMMs, it is hard to use such hardware
in Type II VMMs.

In a similar way to optimizing hypervisors (the lower layer in
Type I VMMs), optimizing hosted VMMs has focused on

bypassing the layers in the host OS (the lower layer in hosted
VMMs). For example, Virtio in Linux helps to link a specialized
guest OS network driver to a specialized host OS network driver
to avoid redundant protocol processing and buffer copying in the
host OS [21]. While this effectively eliminates some of the
previously mentioned cost factors, this hosted VMM analog of
paravirtualization is unable to avoid several sources that incur a
performance penalty, including:

• Duplicate message copying in both the host OS and the guest
OS.

• The high overhead in inter-VM communication. For example,
two guest OSes on the same host OS need to go through full
network protocol stacks.

The main contribution of this paper is that it presents an
alternative approach to optimizing hosted VMMs, called
outsourcing. In contrast to paravirtualization, which optimizes
(low-level modules of) the guest OS to communicate with the

hypervisor, outsourcing specializes (high-level modules of) the
guest OS to communicate with high-level facilities of the host OS.
Specifically, the outsourcing of the socket layer is called socket-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

310

outsourcing. As an illustrative example, Linux Virtio helps to
bypass the host OS protocol stack by invoking a low-level host
driver from the guest OS. In contrast, socket-outsourcing bypasses
the guest OS protocol stack by invoking the socket layer in the
host OS. This design eliminates duplicate message copying and
reduces the inter-VM communication overhead.

We implemented socket-outsourcing in two representative guest
OSes (Linux and NetBSD) running on two hosted VMM
environments (Linux KVM [13] and PansyVM). PansyVM is a

successor to LilyVM [5], a VMM for the x86 architecture based
on paravirtualization with static code rewriting. Our experiments
revealed that guest OSes using socket-outsourcing can achieve the
same network throughput as a native OS using up to four Gigabit
Ethernet links. Using an e-commerce benchmark (RUBiS) that
performed significant inter-VM communication in a consolidated
server environment, socket-outsourcing improved performance by
up to 45 percent compared with conventional hosted VM
environments.

The remainder of the paper is organized as follows. Section 2
compares the network I/O design choices for VMMs. Section 3

discusses issues with application compatibility and IP addresses in
socket-outsourcing. Section 4 presents the VMM support required
for outsourcing and the interface between the guest OS and the
host OS for socket-outsourcing. Section 5 explains the mapping of
the socket layer in Linux and NetBSD onto the host OS. Section 6
describes the implementations of the host-side modules in socket-
outsourcing and the VMM support for outsourcing in Linux KVM
and PansyVM. Section 7 presents the experimental results.
Section 8 covers related work. Finally, Section 9 concludes the
paper.

2. Network I/O in VMMs
Sections 2.1 and 2.2 outline the performance problems
encountered by conventional network I/O processing in hosted
VMM environments. We then describe socket-outsourcing and the
approach we used to address these performance problems.

2.1 Full Virtualization Through Device

Emulation
Figure 1(a) shows network I/O with a device emulator to achieve
full virtualization. The guest OS includes a native device driver
for a popular network device, e.g., NE2000 and RTL8139, since
there are no standards such as SCSI and ATA for networking. The

underlying VMM provides an emulator for these popular network
devices. When the guest device driver executes an I/O instruction,
the VMM traps the execution and emulates it on behalf of the
hardware. Although full virtualization has good compatibility (no
changes to the guest OS), there are some well-known performance
problems due to emulation of devices by the software [23][24].

2.2 Hosted VMM Analog of

Paravirtualization
Figure 1(b) outlines the network I/O processing in hosted VMM

through an approach similar to paravirtualization, used in Xen,
Linux KVM with Virtio support, and User Mode Linux. In this
method, the guest OS uses a special paravirtual device driver that
communicates with a low-level network module running in the
host OS, such as a backend driver in Xen and a TUN/TAP driver
in Linux.

Paravirtualization achieves better performance than full
virtualization, but two problems still remain. First, it is hard to
omit duplicate message copying in both the guest OS and the host
OS. For example, let us assume that a guest process sends a
message with the TCP in Figure 1(b). The guest OS must perform

the first copying for retransmission due to packet losses. The host
OS must perform the second copying to allow the application to
fill the buffer with the next message. The second problem
involves high overhead in inter-VM communications. Message
exchanges between two guest OSes in the same host OS require
processing by two full protocol stacks and a software switch
module.

2.3 Overview of Socket-Outsourcing
To mitigate the performance problems with paravirtualization, we
propose a new network I/O method, i.e., socket-outsourcing.
Figure 1(c) illustrates the control flow for network I/O processing
in socket-outsourcing. Unlike paravirtualization, which attempts
to bypass redundant processing by using low-level interfaces (e.g.,

device drivers), outsourcing attempts to bypass redundant
processing by using a high-level interface (socket). Outsourcing
replaces a high-level module in the host OS, which is referred to
as a guest module, with one that is specialized. In Figure 1(c), the
socket layer is a guest module in outsourcing and it is modified as
the device driver is modified in the paravirtualization in Figure
1(b). The modified socket layer communicates with a program
called a host module. The host module receives requests from the

Guest user
process

Socket
layer

Guest OS

TCP

IP

Unmodied
net driver

Socket
layer

Host OS

TCP

IP

TAPNet driver

NIC

(a) With device emulator based on full
virtualization.

Host helper
Device

emulator

Virtual NIC

CopyCopy

Guest user
process

Socket
layer

Guest OS

TCP

IP

Modied
net driver

Socket
layer

Host OS

TCP

IP

TAPNet driver

NIC

(b) With modied guest device driver based
on paravirtualization.

Copy

Host helper

Copy

Guest user
process

Modied
socket
layer

Guest OS

TCP

IP

Socket
layer

Host OS

TCP

IP

Net driver

NIC

(c) With modied socket layer and host
module based on outsourcing.

Host
module

Host helper

Copy

Guest
module

Figure 1 Network I/O methods in hosted VMM.

311

guest module and issues system calls to the host OS through a
standard API. In Figure 1(c), the host module runs in a user-level
process. We can also execute the host module in the kernel.

Socket-outsourcing has two performance advantages against
paravirtualization. First, we can omit message copying in the
guest OS. We will describe this in more detail in Section 5.2.
Second, we can accelerate inter-VM communication. If a guest

process running in a VM sends a TCP message to another process
running in another VM, only the host stack handles this message,
and no lower layers, such as device drivers and emulated switch
devices relay the message.

3. Issues with Socket-outsourcing

3.1 Application Compatibilities
Socket-outsourcing exploits the standard socket API that both the
guest OS and the host OS provide. If an application relies on non-

standard implementation-specific features of the guest OS
protocol stack, such an application will not work.

To mitigate this compatibility problem, we provide global and

socket options. The global option controls whether or not the
kernel is allowed to use the host stack by default. The socket
option specifies each socket instance that can use or not use the
host stack. When we are not permitted to use the host stack for a
socket, we fall back to the conventional paravirtualization method.

3.2 Sharing of IP Addresses with Host OS
Simple socket-outsourcing appears to be like the network address
translation (NAT) mode of regular hosted virtual machines. This
means the guest OS shares the same IP addresses with the host OS.

Occasionally, we need to allocate one or more dedicate IP
addresses to each VM instance. To accomplish this, we add these
IP addresses to network interfaces in the host in advance. When a
guest process creates a server socket and assigns the IP address
with system call bind(), we enforce the address by restricting the
arguments of system call bind(). When a guest process initiates a
network connection as a client, we enforce the source IP address

with system call bind() in the host module even though the guest
process does not issue bind() in the guest OS.

4. VMM Support for Outsourcing
In paravirtualization, Xen provides shared memory and event
channels for communication between frontend and backend

drivers. Virtio-enabled KVM provides similar facilities. In
outsourcing, we provide Remote Procedure Call (RPC) as well as
shared memory and event queues.

4.1 Communications for Outsourcing
In outsourcing, the VMM must provide communication and

synchronization facilities between a guest module and a host
module. Figure 2 shows three main facilities of the VMM:

Shared memory: The guest module allows the host module to
access its memory regions.

Event queues: An event queue is a data structure allocated in the
shared memory. This facility is used for asynchronous
communication between the host module and the guest module.

VM Remote Procedure Call (VRPC): The guest module calls the
host module and blocks until the host module returns a reply.

In addition to these communication facilities, the VMM maintains

a file descriptor set (FD set). The FD set is similar to the fd_set
type of system call select(). When the VMM notices status
changes in files in the FD set, it calls back the host module. Since
the VMM must handle other events such as timer interrupts and
console I/O, the VMM manages all file descriptors in a centralized
way, and notifies each module of status changes in the module's
files. On the guest OS side, the VMM provides the facility to
generate interrupts to notify the guest OS that events have arrived.
Generating interrupts is a common facility of the VMM.

VRPC is an RPC facility with following specialized features for
the hosted VMM environment. First, the server should not block.

For example, to receive a message, the server should return an
error immediately when no message has arrived. Second, VRPC
parameters are passed via the shared memory and no marshaling
is needed. Third, VRPC does not have to handle errors such as
when the server is down and the network is disconnected. These
features simplify the implementation of outsourcing. The details
on implementing VRPC are described in Section 5.2.

4.2 VRPC Interfaces
Table 1 summarizes the interface between the host module and the
guest module for socket-outsourcing. The first four procedures
initialize and finalize the module and instances.

The procedures from h_connect() to h_getsockopt() provide
similar functions in the regular socket API except that these
procedures never block. For example, procedure h_recvmsg(),
which receives a message from a socket, immediately returns an
error when no message has arrived. The last procedure

h_getstatus() returns the status of a socket, and is used to
implement I/O multiplexing, such as system calls select() and
poll(). Another difference is in the identifier of sockets. These
procedures in Table 1 take a handle that is returned by procedure
h_newsocket().

4.3 Event Interfaces
The host module uses several kinds of events in Table 2 to notify
the guest module of actions of interest. For example, when the
host module notices that a socket has an incoming message, it
sends event ARRIVED to the guest module. In implementing socket-
outsourcing, the event queue is only used in one direction; the
host module sends events to the guest module, but not vice versa.

File descriptor set

Callback Interrupt
VMM

put,
get

Host module
Remote

Procedure Call Guest module

Shared memory

Event queues
put,
get

Figure 2 VMM support for communication between guest

and host modules.

312

5. Mapping Guest OS onto Host OS
We demonstrate the practicality and efficiency of the socket-

outsourcing approach by implementing it in two representative
guest OSes: Linux and NetBSD. Since the Socket API has been
designed to add new protocols in modular way, we were able to
implement socket-outsourcing in these two OSes by replacing
corresponding modules.

5.1 Socket-Outsourcing Implementation in

Linux
The socket layer of Linux allocates socket objects that export
functions described in the structure, proto_ops. To implement
socket-outsourcing in Linux, we replaced functions in structure
proto_ops for TCP and UDP with substitute functions.

In this section, function inet_recvmsg() is used as an example to
illustrate the key idea behind implementing socket-outsourcing.

Function inet_recvmsg() is called from not only system call
recvmsg() but also system calls recv(), recvfrom(), read(), and
readv() to receive a TCP message.

Figure 3 shows the algorithm for function vinet_recvmsg(), which

is a substitute function for inet_recvmsg(). First, this function
allocates non-pageable memory in the kernel space. Next, it
performs a VRPC to the host module. If a message has arrived,
the VRPC returns the number of bytes received. In this case, the
function copies out the message to the user space, frees the non-
pageable memory, and returns the same value. We will discuss
how this copying can be avoided in Section 5.2.

If no message has arrived at the socket, the current process blocks
and waits for a new message. When the host module notices a

message has arrived, it inserts an event into the queue for the
guest module, and asks the VMM to generate an interrupt to the
guest OS. The interrupt handler of the guest OS receives the event,
and unblocks the waiting process. When the process becomes
ready again, it tries the VRPC again to obtain the received
message.

 To implement socket-outsourcing in Linux, we added 700 lines of
code to Linux 2.4.27, and 1300 lines of code to Linux 2.6.25.

5.2 Optimistic Copy Avoidance in Linux
In the previous subsection, we discussed that an arriving message
is copied twice: from the host kernel to the host user process and

from the guest kernel to the guest user process. The host user
process and the guest kernel use shared memory mapping (Figure
4(a)) to avoid the third copying. First, the VMM allocates physical

memory for the guest OS at the time of initialization. Second, the
same memory is mapped to the logical address space of the host
process on which the guest OS resides. When the host module in
this process is called through procedure h_recvmsg(), the host
module first extracts the parameters and obtains the destination

address in the guest logical address. The host module translates
the guest logical address into the guest physical address using the
page table of the VMM. This translation never fails because the
destination is fixed non-pageable memory in the guest kernel.
Next, the host module translates the guest physical address to the
host logical address. Finally, the host module issues system call
recvmsg() with the host logical address. The host OS performs the
first copying in system call recvmsg(). After VRPC h_recvmsg()

returns from the host OS, the guest OS performs the second
copying from the kernel non-pageable memory to the user
memory.

Figure 4(b) shows how we can avoid performing the second
copying, but a page fault can still occur in the guest OS. In Figure
4(a), the destination of recvmsg() in the guest OS occupies three
pages: two pages are resident in the main memory, and the last
page is not resident at the guest OS level. In this case, the host
module is unable to translate the guest logical address of the last
page into the guest physical address.

Regular OS kernels provide powerful copying functions to take
care of page faults, e.g., copy_to_user() in Linux and copyout() in
BSD. If a page fault occurs, the page fault handler first allocates a
memory page, and resumes copying. In outsourcing, we took an

Table 1 VRPC interface for socket-outsourcing.

Names Descriptions
h_init Initialize the module.
h_final Finalize the module.
h_newsocket Create a socket instance.
h_delete Delete a socket instance.
h_bind Bind a name to a socket.
h_listen Listen for connections on a socket.
h_connect Initiate a connection on a socket.
h_accept Accept a connection on a socket.
h_sendmsg Send a message from a socket.
h_recvmsg Receive a message from a socket.
h_shutdown Shutdown part of a full-duplex

connection.
h_getsockname Get the name of a socket.
h_getpeername Get the name of a connected peer.
h_setsockopt Set options on a socket.
h_getsockopt Get options on a socket.
h_getstatus Get the status of a socket.

Table 2 Events from host module to guest module for socket-

outsourcing.

Names Descriptions

ESTABLISHED A connection has been established.

EMPTY The send buffer becomes available.

ARRIVED A message has arrived.

OOB_ARRIVED An out-of-bound message has arrived.

ERROR An error occurred.

1. Allocate non-pageable memory.

2. Call host procedure h_recvmsg() with the address of the non-

pageable memory.

3. If the procedure returns a no-message error, block the

current process. When the current process is unblocked, go

to 2.

4. Otherwise, copy the received message from non-pageable

memory to the destination memory in the user process.

5. Free the non-pageable memory, and return the result (the

number of bytes received or an error) to the user.

Figure 3 Algorithm for receiving TCP message in Linux

based on socket-outsourcing.

313

optimistic approach to solving this page-fault problem.

Figure 5 shows the algorithm for function vinet_recvmsg() with
optimistic copy avoidance. First, the function touches each
memory page (by reading/writing one byte) of the destination to
retrieve the pages into physical memory. In Linux, touching is
implemented by calling functions get_user() and put_user(). Next,
the function performs a VRPC to receive a message with the

logical address of the user process. If the host module returns a
page-fault error, the function falls back to the copying method. If
the host module returns the number of bytes received, function
vinet_recvmsg() returns the same value to the user process.

5.3 Socket-outsourcing Implementation in

NetBSD
NetBSD has a TCP/IP stack that is derived from 4.4 BSD [15].
Unlike Linux, the protocol stack of 4.4 BSD consists of generic
functions that can handle several protocols including TCP, UDP,
Unix Domain Sockets, and Unix pipes. These generic functions

call function usrreq() (user request) when they need protocol
specific actions. For example, system call bind() calls usrreq()
with request PRU_BIND. Each protocol has its own usrreq()
function. Therefore, we replaced function usrreq() for TCP and
UDP to implement socket-outsourcing. In addition to usrreq(), we
had to override function soreceive() to avoid copying as described
in Section 5.2.

In summary, we added 600 lines of code to NetBSD 2.0, and 1000
lines of code to NetBSD 4.0 to implement socket-outsourcing.

6. Implementation of Host Modules and

VMM Extensions

6.1 User-level Host Module for Socket-

Outsourcing
We implemented a user-level host module for socket-outsourcing.
This module runs in the user-level VMM, acts as a VRPC server

for the guest module and provides the VRPC interface described
in Table 1. Most procedures in Table 1 issue corresponding
system calls for the host OS. For example, procedure h_connect()
issues system call connect().

Several actions occur when the host module receives request
h_newsocket(). First, the host module issues system call socket()
to the host OS. Second, the host module provides a non-blocking
I/O feature to the new socket by using the fcntl() system call with
the parameter, O_NONBLOCK. This is essential to achieve the non-
blocking feature described in Section 4.1. Third, the host module
registers the file descriptor of the new socket to the FD set in the

VMM. After this, the VMM calls the host module back when
some status in the socket changes. Finally, the host module returns
a handle for the socket.

When the VMM notices a change in status, such as a message
arriving, the VMM calls the host module back. The host module
analyzes the status change, and usually sends an event to the guest
module through the event queue. For example, when the host
module notices that a socket has an incoming message, the
module sends an event, ARRIVED in Table 2, to the guest module.
Finally, the host module asks the VMM to generate an interrupt to
the guest OS to deliver the event.

6.2 Extending Linux KVM
The Linux Kernel-based Virtualization Driver (KVM) is a kernel
extension (a pseudo-device driver) that provides a framework for
writing a VMM at the user-level [13]. KVM captures the
execution of privileged instructions and sensitive non-privileged

instructions by using hardware support (Intel VT or AMD-V).
KVM gives notifications of the executions to a user-level program

Guest
physical
memory

Guest
kernel

Guest user process

Page fault

Host
kernel

Copying in
recvmsg()

R
es

id
en

t

Copying in
recvmsg()

Host user process (VMM)

Guest
kernel

Guest user process

Touch

Host
kernel

Copying in
recvmsg()

Host user process (VMM)

Guest
physical
memory

R
es

id
en

t

(a) Duplicate copying in recvmsg(). (b) Single copying in recvmsg().
Figure 4 Avoiding copying in socket-outsourcing.

1. Touch the destination memory in the user process with the

write mode.

2. Call host procedure h_recvmsg() with the address of the

destination memory in the user process.

4. If the procedure returns a no-message error, block the current

process. When the current process is unblocked, go to 1.

5. If a page fault occurs in the host module, fall back to the

copying method in Figure 3.

6. Otherwise, return the result (the number of bytes received or

an error) to the user.

Figure 5 Algorithm for receiving TCP message with optimistic
copy avoidance.

314

through system call ioctl(). The distribution of KVM includes a
modified QEMU [2] for emulating I/O devices.

We have extended KVM to provide VMM-support facilities
including shared memory, event queues, and VRPC, as described
in Section 4.1. In KVM, the user-level QEMU code can access
any guest physical memory. We used this feature as shared
memory between the host and guest modules. In shared memory,

we provided library functions to manipulate queues for both the
host and guest modules.

We implemented VRPC using the instruction vmcall in Intel VT-

enabled CPUs. The guest-side code first places the VRPC
parameters in the stack and registers. Next, it executes the vmcall
instruction. Executing this instruction causes a trap to the VMM,
also known as a VM exit in Intel's terminology. The modified
kernel module of KVM transfers the flow of control to the user-
level QEMU code. The modified QEMU analyzes the reason for
the trap, and calls the host module.

6.3 PansyVM
PansyVM is a successor to LilyVM [5], a VMM for the x86
architecture based on paravirtualization. In LilyVM and PansyVM,
the sensitive instructions [17] of x86 are translated into library
function calls at the time of compilation. This translation reduces
the porting efforts of the guest OS in paravirtualization. It also
enables a guest OS to be executed on a CPU that does not have

VT capabilities. The previous version of PansyVM used
paravirtual drivers for networks and block devices for
performance. Unlike LilyVM, PansyVM includes a kernel-level
code for fast handling of exceptions.

We implemented shared memory, event queues, and VRPC for
PansyVM in a similar fashion to their implementations in KVM.
Since PansyVM does not require VT capabilities, we implemented
the VRPC facility by extending the regular hypervisor call
mechanism.

7. Evaluations

7.1 Experimental Setup
We used three Intel Xeon 5160 3.0-GHz machines (Dell Power
Edge 1900) with 4 MB of L2 cache and 2 GB of main memory for
our experiments. Each machine had four network interface cards
(NICs), all connected to a gigabit network switch (Nortel 3510-
24T). We turned off the machine's SMP capabilities to reduce the
variance and increase the reproducibility of the measurements
(CPU overheads of target VMM environments).

We ran the experiments on two VMM environments: KVM 66,
and PansyVM 2008-05-05. Since KVM uses QEMU’s device
emulation modules, we used QEMU’s network device i82557b in
the emulation method.

We conducted all experiments using Linux 2.6.25 for the guest
and host OSes in both virtual environments. We used a disk

partition as the backing store of a guest disk image. We set the
main memory of the guest Linux to 256 MB while the host Linux
was allowed to use all 2 GB of main memory.

In Linux KVM, we compared the emulation method (KVM-emu),
the paravirtualization method (KVM-virtio), and our outsourcing
method (KVM-out). In PansyVM, we compared the
paravirtualization method (PansyVM-tap) and the outsourcing
method (PansyVM-out). We used a TAP device for the
paravirtualization in PansyVM.

In the experiments that followed, we measured the performance of
the guest OS running in each virtual environment as well as the
performance of a native OS running on the non-virtualized
environment.

7.2 Maximum Network Throughput
We used iperf [7], a tool for measuring network bandwidth, to
measure the maximum network throughput between our
experimental machines. Since each machine had multiple NICs,
we launched multiple instances of iperf for each NIC
simultaneously and calculated the combined network throughput

by adding the measured bandwidth of each NIC. The iperf
messages we used for all the experiments were 1 and 32 KB in
size. The MTU of each NIC was 1500 B.

Figure 6 shows our measured results when we increased the
number of NICs up to four. Although we measured both the
sending and receiving performance, we included the results of
sending in Figure 6 because both sending and receiving yielded
similar results. Sending was faster than receiving since sending
consumed less CPU resources. Although PansyVM was faster
than KVM by using file I/O benchmarks, PansyVM was slower
than KVM by using this network I/O benchmark. This is because

the paravirtual driver of PansyVM required an extra message
copying.

KVM-out and PansyVM-out sped up TCP sending throughput by

25 times compared with the emulation method, and reached native
performance when the message size was 32 KB. This improved
performance with outsourcing was mainly achieved by
eliminating the copying as described in Section 5.2. When the
message was 1 KB, KVM-virtio was better than KVM-out
because there were numerous host-guest switches. In KVM-virtio,
the paravirtual driver queued an I/O request for each network
frame with a Maximum Transfer Unit (MTU), and several

0 1000 2000 3000 4000

Linux

PansyVM-out

PansyVM-tap

KVM-out

KVM-virtio

KVM-emu

En
vi

ro
nm

en
ts

Throughput [M bps]

1 KB
32 KB

Figure 6 Maximum TCP throughput measured with iperf

(sending).

0 2000 4000 6000 8000

(Linux-loop)

PansyVM-out

PansyVM-tap

KVM-out

KVM-virtio

KVM-Emu

En
vi

ro
nm

en
ts

Throughput [M bps]

18500

 (Crash)

Figure 7 Maximum inter-VM TCP throughput within single

host.

315

requests were batched and processed in a single host-guest context
switch. In KVM-out, the guest OS interacted with the host OS for
each original message.

7.3 Inter-VM Communication
We measured the maximum TCP throughput between two virtual
machines running on the same host OS by using the iperf tool as
discussed in Section 7.2. The bar chart in Figure 7 shows the
results. The last Linux-loop means communication between two
processes within a host OS via the local loopback interface. We
were not able to obtain results for KVM-emu because flooding
messages due to iperf crashed the VM.

As seen in this chart, KVM-out achieved 5700 Mbps and
PansyVM-out achieved 6700 Mbps and they were faster than

KVM-virtio and PansyVM-tap. KVM-virtio was slow in our
experiments due to a scheduling problem. In KVM-virtio, the
round trip time (RTT) of the ping message was 20 ms, which was
double that of a periodic timer interval.

7.4 Web Application Benchmark
To evaluate the impact of performance on applications, we
measured throughput with the RUBiS benchmark [3], consisting
of 26 interactions with a Java-based auction site running Web
servers, application servers, and database servers. Examples of
RUBiS transactions include: login, browsing, searching,
purchasing, and selling. We used the servlet version of RUBiS,
consisting of servlets running in Tomcat, a database server
(MySQL), and a client emulator. We ran Apache Tomcat and

MySQL servers in a single virtual environment, or in two
dedicated virtual environments, and executed the client emulator
on the other machine running native Linux. To measure the best
throughputs, we changed the number of clients within a range
from 200 to 2000. We used the default workload of RUBiS 1.4.3,
and initialized the database with a 30-MB set for each execution.
We ran Apache Tomcat 6.0.16 by Java EE SDK 5.04 and MySQL
5.0.

The bar charts in Figure 8 show the RUBiS throughputs in various
virtual environments including native Linux. When we ran both
Tomcat and MySQL in a single virtual machine (Figure 8(a)),

KVM-out sped up the throughput by 44 percent and PansyVM-out
by 25 percent compared with KVM-emu, and these were faster
than the paravirtual throughputs. In this experiment, a localhost

optimization in KVM-out and PansyVM-out worked well. In this
optimization, Tomcat and MySQL communicated within the guest
OS as in KVM-emu and KVM-virtio.

Using two virtual machines (Figure 8(b)), KVM-out sped up the
throughputs by 46 percent and PansyVM-out by 26 percent
compared with KVM-emu, and these were faster than the
paravirtual throughputs. In this experiment, KVM was faster than
PansyVM because KVM effectively used hardware support for
virtualization.

In summary, socket-outsourcing improved the performance of a
Web application with databases because it accelerated both the

communication to clients and the communication between the
Web server and database server.

8. Related Work
Xen [9] avoids heavy device emulation by providing a paravirtual
network driver based on paravirtualization. In Menon et al. [16],

the guest OS running in a Domain-U could use intelligent NIC
facilities, including scatter/gather I/O and TCP/IP checksum

offloading. The Linux kernel after version 2.6.24 includes a
framework called Virtio for paravirtual device drivers [21]. The
VMware Virtual Machine Interface (VMI) provides I/O facilities
for paravirtual network drivers in the VMware Workstation [24].
These approaches focus on low-level modules based on

paravirtualization while we focused on a high-level module based
on outsourcing.

XWay [10], XenLoop [26], and XenSocket [27] accelerate inter-

VM communication in Xen by using shared memory and other
communication support by Xen. These are dedicated for inter-VM
communication. Socket-outsourcing improves performance not
only for inter-VM communication but also for outside
communication to the Internet.

Outsourcing the socket layer resembles TCP/IP offloading
[6][11][18][19]. Outsourcing is different in that it delegates the
facility of a module to another software module while TCP/IP
offloading delegates the facility to hardware. SOP modifies the
socket layer for high-level TCP/IP offloading engines (TOEs) [22].
SOP does not support virtual environments, and no results for
performance have been reported.

The network performance of hosted VMMs has been improved by
reducing the number of context switches, avoiding copying, and

specializing network stacks [12][14]. While these approaches
have focused on optimizing and specializing guest OSes, socket-
outsourcing improves network performance by bypassing the
entire processing in guest OSes.

User Mode Linux is a port of Linux to Linux [4], and includes a
special file system called hostfs to access the files in the host OS.
Cooperative Linux (coLinux) is a port of Linux to Windows as
well as Linux [1]. Cooperative Linux includes a special file
system called cofs to access the Windows files. Both hostfs and
cofs can be regarded as outsourcing of the VFS layer. This paper
has discussed outsourcing of the socket layer.

0 100 200 300 400

Native-
PansyVM-out
PansyVM-tap

KVM-out
KVM-virtio
KVM-emu

En
vi

ro
nm

en
ts

Throughput [request/s]

(a) Using single virtual machine

0 100 200 300 400

Native-
PansyVM-out
PansyVM-tap

KVM-out
KVM-virtio
KVM-emu

En
vi

ro
nm

en
ts

Throughput [request/s]

(b) Using two virtual machines

Figure 8 Results of RUBiS benchmark.

316

9. Conclusion
We described outsourcing, an approach to bypassing unnecessary

overhead at a high level of abstraction for Type II VMMs (hosted
VMMs). We illustrated the outsourcing approach with an
experimental implementation of network I/O at the socket layer
(socket-outsourcing) in two guest OSes (Linux and NetBSD) on
two VMMs (Linux KVM and PansyVM). In socket-outsourcing,
we modified the socket layer of the guest OS and connected it to a
module running in the host OS. The guest socket layer and the
host module communicate by using VMM support for socket-

outsourcing, such as shared memory, event queues, and RPC
specialized for VMM environments (VRPC).

The experimental measurements demonstrated socket-outsourcing

significantly improved network performance in two virtual
environments: Linux KVM and PansyVM. With outsourcing,
Linux on PansyVM achieved native performance for both sending
and receiving and Linux on KVM achieved that for sending when
the message was 32 KB. Using the RUBiS e-commerce
benchmark that performs significant inter-VM communications,
Linux using socket-outsourcing on KVM ran faster by 45 percent
and PansyVM by 25 percent than Linux on KVM using the
emulation method.

References
[1] Dan Aloni: "Cooperative Linux", the Ottawa Linux

Symposium (OLS-2004), pp.23-31 (2004).

[2] Fabrice Bellard: "QEMU, a Fast and Portable Dynamic
Translator", the USENIX 2005 Annual Technical Conference,
FREENIX Track, pp. 41-46 (2005).

[3] Emmanuel Cecchet, Julie Marguerite, and Willy
Zwaenepoel: "Performance and scalability of EJB
applications", Object Oriented Programming Systems
Languages and Applications (OOPSLA), pp. 246-261 (2002).

[4] Jeff Dike: "A user-mode port of the Linux kernel", 4th
Annual Linux Showcase & Conference (2000).

[5] Hideki Eiraku and Yasushi Shinjo: "Running BSD Kernels as
User Processes by Partial Emulation and Rewriting of
Machine Instructions", the USENIX BSDCon 2003
Conference (BSDCon'03), pp. 91-102 (Sep. 2003).

[6] Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz,
Erich Nahum, Prashant Pradhan, and John Tracey: "Server

Network Scalability and TCP Offload", the USENIX Annual
Technical Conference, pp. 209-222 (2005).

[7] Mark Gates, Ajay Tirumala, Jon Dugan, and Kevin Gibbs:
"Iperf User Docs" (2003). http://sourceforge.net/projects/iperf

[8] Robert P. Goldberg: "Survey of Virtual Machine Research.
IEEE Computer, pp. 34-45 (1974).

[9] Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield:
"Xen and the Art of Virtualization", 19th ACM Symposium
on Operating Systems Principles, pp. 164-177 (2003).

[10] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyun-Sup Shin,
and Jin-Soo Kim: "Inter-domain socket communications

supporting high performance and full binary compatibility on
Xen", International Conference on Virtual Execution
Environments (VEE-08), pp. 11-20 (2008).

[11] Krishna Kant: "TCP Offload Performance for Front-End
Servers", IEEE Global Telecommunications Conference
(GLOBECOM 03), pp.3242-324 (2003).

[12] Samuel King, George Dunlop, and Peter: "Operating System
Support for Virtual Machines", the USENIX Annual
Technical Conference (2003).

[13] Avi Kivity, Yaniv Kamay, and Dor Laor: "kvm: the Linux
Virtual Machine Monitor", the Linux Symposium, pp. 225-
230 (2007).

[14] Younggyun Koh, Calton Pu, Sapan Bhatia, and Charles
Consel: "Efficient Packet Processing in User-Level OSes: A
Study of UML", the 31st IEEE Conference on Local
Computer Networks (2006).

[15] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels,
and John S. Quarterman: "The Design and Implementation of
the 4.4 BSD Operating System", Addison Wesley (1996).

[16] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel:
"Optimizing Network Virtualization in Xen", the 2006
USENIX Annual Technical Conference, pp. 15-28 (2006).

[17] John Scott Robin and Cynthia E. Irvine: "Analysis of the
Intel Pentium's Ability to Support a Secure Virtual Machine
Monitor", the USENIX Security Symposium (2000).

[18] Murali Rangarajan, Aniruddha Bohra, Kalpana Banerjee,
Enrique V. Carrera, Ricardo Bianchini, Liviu Iftode, and

Willy Zwaenepoel: "TCP Servers: Offloading TCP/IP
Processing in Internet Servers. Design, Implementation, and
Performance", Computer Science Department, Rutgers
University, Technical Report DCR-TR-48 (2002).

[19] Greg Regnier, Srihari Makineni, Ramesh Illikkal, Ravi Iyer,
Dave Minturn, Ram Huggahalli, Don Newell, Linda Cline,
and Annie Foong: "TCP Onloading for Data Center Servers",
IEEE Computer, pp. 48-58 (2004).

[20] Mendel Rosenblum and Tal Garfinkel: "Virtual Machine
Monitors: Current Technology and Future Trends", IEEE
Computer, Vol. 38, No. 5 pp. 39-47 (May 2005).

[21] Rusty Russell: "Virtio: towards a de-facto standard for virtual
I/O devices", ACM SIGOPS Operating Systems Review,
Vol.42, No.95-103 (2008).

[22] Sunghoon Son, Jaeyol Kim, Eunji Lim, and Sungin Jung:
"SOP: A Socket Interface for TOEs", Internet and
Multimedia Systems and Applications, pp. 294-299 (2004).

[23] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong
Lim: "Virtualizing I/O Devices on VMware Workstation's
Hosted Virtual Machine Monitor", the 2001 USENIX Annual
Technical Conference (2001).

[24] "Paravirtualization API Version 2.0", VMware,
http://www.vmware.com (2006).

[25] Carl A. Waldspurger: "Memory Resource Management in
VMware ESX Server", 5th Symposium on Operating
Systems Design and Implementation (OSDI-2002), pp.181-
194 (2002).

[26] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan:
"XenLoop: A Transparent High Performance Inter-VM
Network Loopback", International Symposium on High
Performance Distributed Computing, pp.109-118 (2008).

[27] Xiaolan Zhang, Suzanne McIntosh, Pankaj Rohatgi, and John
Linwood Griffin: "XenSocket: A High-Throughput

Interdomain Transport for Virtual Machines", International
Middleware Conference (2007).

317

