Nonblocking Memory Management Support
for Dynamic-Sized Data Structures

MAURICE HERLIHY

Brown University

and

VICTOR LUCHANGCO, PAUL MARTIN, and MARK MOIR
Sun Microsystems Laboratories

Conventional dynamic memory management methods interact poorly with lock-free synchroniza-
tion. In this article, we introduce novel techniques that allow lock-free data structures to allocate
and free memory dynamically using any thread-safe memory management library. Our mecha-
nisms are lock-free in the sense that they do not allow a thread to be prevented from allocating or
freeing memory by the failure or delay of other threads. We demonstrate the utility of these tech-
niques by showing how to modify the lock-free FIFO queue implementation of Michael and Scott
to free unneeded memory. We give experimental results that show that the overhead introduced
by such modifications is moderate, and is negligible under low contention.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming
General Terms: Algorithms

Additional Key Words and Phrases: Multiprocessors, nonblocking synchronization, concurrent data
structures, memory management, dynamic data structures

1. INTRODUCTION

A lock-free concurrent data structure is one that guarantees that if multiple
threads concurrently access that data structure, then some thread will com-
plete its operation in a finite number of steps, despite the delay or failure of
other threads. Lock-free synchronization aims to avoid many problems that are
associated with the use of locking, including convoying, susceptibility to failures
and delays, and, in real-time systems, priority inversion.

Early work on lock-free synchronization addressed the circumstances under
which it can be accomplished at all [Herlihy 1991]. More recent work has focused
on general constructions [Anderson and Moir 1999; Greenwald 1999], and on
specific data structures [Agesen et al. 2002; Detlefs et al. 2000; Greenwald 1999;
Harris 2001; Michael and Scott 1996], and there is increasing interest and
success in achieving practical implementations. In fact, support for lock-free

Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, RI 02912; email: herlihy@cs.brown.edu; V. Luchangco, P. Martin, and M. Moir, Sun
Microsystems Laboratories, 1 Network Drive, UBUR02-311, Burlington, MA 01803; email: {victor.
luchangco,paul.a.martin,mark.moir}@sun.com.

Copyright is held by Sun Microsystems, Inc.

2005 ACM 0734-2071/05/0500-0146

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005, Pages 146-196.

Memory Management Support for Data Structures . 147

synchronization has recently been incorporated into the Java standard, and
new concurrency libraries for the Java programming language include practical
lock-free data structures [Lea 2003]. Most recently, there has been a flurry
of interest in providing direct hardware support for lock-free synchronization
[Martinez and Torrellas 2002; Oplinger and Lam 2002; Rajwar and Goodman
2002] to avoid some of the overhead inherent in software-based solutions. The
trend is clear: data structures employing lock-free synchronization are likely
to become more common in multiprocessor applications.

In this article, we address a pragmatic issue that has received surprisingly
little attention: how to enable lock-free data structures to grow and shrink. For
reasons described below, conventional dynamic memory management methods
interact poorly with lock-free synchronization. We present alternative mecha-
nisms that allow lock-free data structures to allocate and free memory dynami-
cally using off-the-shelf thread-safe memory management libraries. Our mech-
anisms are lock-free in the sense that they do not allow a thread to be prevented
from allocating or freeing memory by the failure or delay of other threads. Our
mechanisms can be integrated with any thread-safe memory management li-
brary (although, of course, the ensemble is lock-free only if the library is also
lock-free!).

Let us review why lock-free synchronization makes dynamic memory man-
agement so hard. The key difficulty is that we cannot free a memory block (e.g.,
a node in a linked list) unless we can guarantee that no thread will subse-
quently modify that block. Otherwise, a thread might modify the memory block
after it has already been reallocated for another purpose, with potentially dis-
astrous results. Furthermore, in some systems, even read-only accesses to freed
memory blocks can be problematic: the operating system may remove the page
containing the memory block from the thread’s address space, rendering the
address invalid [Treiber 1986]. In data structures that use locking, a common
pattern is to ensure that a thread can acquire a pointer to a particular block
only after acquiring a lock, ensuring that only one active pointer exists for that
block. In lock-free data structures, by contrast, it may be difficult for a thread
that is about to free a block to ensure that no other thread has that pointer in
a local variable.

Memory management for lock-free data structures has received surprisingly
little attention. (An exception is the recent work of Michael [2002a], who has
independently and concurrently? developed a technique very similar to ours;
see Section 8 for a comparison.) Prior attempts to support explicit memory
management for highly-concurrent data structures have significant drawbacks,
including restricted flexibility and/or applicability, and unacceptable behavior
in the face of thread failures. An ideal solution is to employ garbage collec-
tion (GC), and experience [Detlefs et al. 2000] shows that the availability of
GC significantly simplifies the design of lock-free dynamic-sized data struc-
tures. However, GC is not always available, especially when implementing GC
itself.

IFor example, see Dice and Garthwaite [2002].
2Proceedings of PODC 2002 [Herlihy et al. 2002; Michael 2002a].

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

148 . M. Herlihy et al.

1.1 Overview

In Section 2, we present a simple example that illustrates the difficulties that
arise in implementing a lock-free dynamic-sized data structure. We also show
how to overcome these difficulties using the mechanisms presented in this ar-
ticle. We present the API for our mechanisms in Section 3.

In Section 4, we take on a more substantial example. We show how to use
our mechanisms to make the lock-free FIFO queue of Michael and Scott [1998]
truly dynamic-sized. In the the original implementation, nodes removed from
the queue are stored in a special “freelist” private to the queue. These nodes
can be reused for the queue, but can never be freed for use by other data struc-
tures. As a result, the queue’s space consumption is its maximum historical
size, rather than its current size. In Section 5, we present experimental results
that show that the ability to free unused queue nodes incurs only a modest
penalty.

In Section 6, we describe in detail the “Pass The Buck” (PTB) algorithm,
which is one way to implement the mechanisms we propose; we also present
a simpler but slightly weaker variant on this algorithm, demonstrating that
a variety of solutions can be “plugged into” our techniques, with no impact on
user code.

Section 7 presents another application of our mechanisms: single-word lock-
free reference counting (SLFRC) is a technique for transforming certain kinds
of lock-free data structure implementations that rely on garbage collection (i.e.,
they never explicitly free memory) into dynamic-sized data structures.

We present related work in Section 8, and conclusions in Section 9.

The PTB algorithm is subtle and requires careful explanation; a formal proof
that it correctly implements our API is included in Appendix B. A formal proof
of correctness requires a formal specification of the problem, which we provide
in the Repeat Offender Problem (ROP), defined in Appendix A. ROP captures
the abstract properties that our API is intended to provide. Because PTB can be
replaced by any algorithm that correctly implements the API we have specified,
we often refer to “ROP solutions” in general—rather than the PTB algorithm
specifically—when discussing applications of our mechanisms.

2. SIMPLE EXAMPLE: A LOCK-FREE STACK

To illustrate the problem that we solve in this article, we consider a sim-
ple example: a lock-free integer stack implemented using the compare-and-
swap (CAS) instruction. We first present a naive stack implementation, and
explain two problems with it. We then show how to address these prob-
lems using the mechanisms presented in this article. Finally, for the inter-
ested reader, we describe the guarantees made by our mechanisms, and ar-
gue that these guarantees, combined with the conditions that the programmer
must ensure (explained below), are sufficient to achieve the desired behavior.
The following preliminaries apply to all of the algorithms presented in this
article.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 149

struct nodeT {int val; nodeT *next;} int Pop() {
shared variable 7 mnodeT *oldtos, *newtos;
nodeT *TOS initially NULL; 8 do {
9 oldtos = *TOS;
void Push(int v) { 10 if (oldtos == NULL) return “empty”;
1 nodeT *oldtos, 11 newtos = oldtos—next;
*newnode = malloc(sizeof(nodeT)); 12 } while (ICAS(&TOS, oldtos, newtos));
2 newnode—val = v; 13 int val = oldtos—val;
3 do { 14 free(oldtos);
4 oldtos = *TOS; 15 return val;
5 newnode—next = oldtos; }
6 } while (ICAS(&TOS, oldtos, newnode));
}

Fig. 1. Naive stack code.

2.1 Preliminaries

We assume a sequentially consistent shared-memory multiprocessor sys-
tem [Lamport 1979]° without garbage collection (GC); memory on the heap
is allocated and deallocated using malloc and free. We further assume that
the machine supports a compare-and-swap (CAS) instruction that accepts three
arguments: an address, an expected value and a new value. The CAS instruc-
tion atomically compares the contents of the address to the expected value and,
if they are equal, stores the new value at the address and returns ¢rue. If the
comparison fails, no changes are made to memory, and the CAS instruction
returns false.

2.2 A Naive Implementation and lts Pitfalls

An obvious implementation approach for our lock-free integer stack is to repre-
sent the stack as a linked list of nodes, with a shared pointer—call it TOS—that
points to the node at the top of the stack. In this approach, pushing a new value
involves allocating a new node, initializing it with the value to be pushed and
the current top of stack, and using CAS to atomically change TOS to point to the
new node (retrying if the CAS fails due to concurrent operations succeeding).
Popping is similarly simple: we use CAS to atomically change TOS to point to
the second node in the list (again retrying if the CAS fails), and retrieve the
popped value from the removed node. Because the system does not have GC,
we must explicitly free the removed node to avoid a memory leak. Code based
on this (incorrect) approach is shown in Figure 1.

One problem with the naive stack implementation is that it allows a thread
to access a freed node. To see why, observe that a thread p executing the Pop
code at line 11 accesses the node it previously observed (at line 9) to be at the
top of the stack. However, if another thread g executes the entire Pop operation
between the times p executes lines 9 and 11, then g will free that node (line
14), and p will access a freed node.

3We have implemented our algorithms for SPARC®-based machines providing only TSO (Total
Store Ordering) [Weaver and Germond 1994]—a memory model that is slightly weaker than sequen-
tial consistency—which required additional memory barrier instructions to be included in places.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

150 . M. Herlihy et al.

A more subtle problem, widely known as the ABA problem [Michael and
Scott 1998], involves a variable changing from one value (A) to another (B), and
subsequently back to the original value (A). The problem is that CAS does not
distinguish between this situation and the one in which the variable does not
change at all. The ABA problem manifests itself in the naive stack implemen-
tation as follows: Suppose the stack currently contains nodes A and B (with
node A being at the top of the stack). Further suppose that thread p, executing
a Pop operation reads a pointer to node A from T0S at line 9, reads a pointer
from node A to node B at line 11, and prepares to use CAS to atomically change
TOS from pointing to node A to pointing to node B. Now, let us suspend thread
p while thread ¢ executes the following sequence of operations: First, g exe-
cutes an entire Pop operation, removing and freeing node A. Now, TOS contains
a pointer to node B. Next, g executes another Pop operation, and similarly re-
moves and deletes node B. (Now the stack is empty.) Next, ¢ pushes a new
value onto the stack, allocating node C for this purpose. Finally, ¢ pushes yet
another value onto the stack, and in this last operation, happens to allocate
node A again (this is possible because node A was previously freed). Now T0S
again points to node A, which points to node C. At this point, p resumes exe-
cution and executes its CAS, which succeeds in changing T0S from pointing to
node A to pointing to node B. This is incorrect, as node B has been freed (and
may have subsequently been reallocated and reused for a different purpose).
Further, note that node C has been lost from the stack. The root of the problem
is that p’s CAS did not detect that TOS had changed from pointing to node A
and later changed so that it was again pointing to node A: the dreaded ABA
problem.

2.3 Our Mechanisms: PostGuard and Liberate

In this article, we provide mechanisms that allow us to efficiently overcome
both of the problems described above without relying on GC. Proper use of
these mechanisms allows programmers to prevent memory from being freed
while it might be accessed by some thread. In this subsection, we describe
how these mechanisms should be used, and illustrate such use for the stack
example.

The basic idea is that before dereferencing a pointer, a thread guards the
pointer, and before freeing memory, a thread checks whether a pointer to the
memory is guarded. For these purposes, we provide two functions,* PostGuard
and Liberate. PostGuard takes as an argument a pointer to be guarded.
Liberate takes as an argument a pointer to be checked and returns a (pos-
sibly empty) set of pointers that it has determined are safe to free. The pointers
returned by Liberate are said to be liberated when they are returned. Whenever
a thread wants to free memory, instead of directly invoking free, it passes the
pointer to Liberate, and then invokes free on each pointer in the set returned
by Liberate.

4We use a restricted interface here, which is sufficient for this example. In the next section, we
present an interface that is more widely applicable; for example, it provides support for a thread
to guard multiple pointers simultaneously.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 151

The most challenging aspect of using our mechanisms is that simply guarding
a pointer is not sufficient to ensure that it is safe to dereference that pointer:
another thread might liberate and free a pointer after some thread has decided
to guard that pointer but before it actually does so. As explained in more detail
below, Liberate never returns a pointer that is not safe to free, provided the
programmer guarantees the following property:

At the moment that a pointer is passed to Liberate, any thread
that might dereference this instance® of the pointer has already
guarded it, and will keep the pointer guarded until after any such
dereferencing.

If a thread posts a guard on a pointer, and subsequently determines that the
pointer has not been passed to Liberate since it was last allocated, then we
say that the guard traps the pointer until the guard is subsequently posted on
another pointer, or removed from this pointer. We have found this terminology
useful in talking about algorithms that use our mechanisms. It is easy to see
that the programmer can provide the guarantee stated above by ensuring that
the algorithm never dereferences a pointer that is not trapped.

We have found that the following simple and intuitive pattern is often useful
for achieving the required guarantee when implementing shared data struc-
tures: A thread passes a pointer to Liberate only after it has determined that
the memory block to which it points has been removed from the shared data
structure (and will not be put in the shared data structure again unless it is
liberated, freed, and subsequently reallocated). Given this, whenever a thread
reads a pointer from the data structure in order to dereference it, the thread
uses PostGuard to post a guard on that pointer, and then attempts to determine
that the memory block is still in the data structure. If it is, then the pointer has
not yet been passed to Liberate, so it is safe to dereference the pointer; if not,
the thread retries. Determining whether a block is still in the data structure
may be as simple as rereading the pointer (for example, in the stack example
presented next, we reread TOS to ensure that the pointer is the same as the one
we guarded; see lines 9¢ and 9d in Figure 2). In other cases, it may be somewhat
more complicated; one such example is presented in Section 4.

2.4 Using Our Mechanisms to Fix the Naive Stack Algorithm

In Figure 2, we present modified stack code that uses PostGuard and Liberate
to overcome the problems with the naive stack algorithm presented earlier.
To see how the modified code makes the required guarantee, suppose that a
thread p passes a pointer to node A to Liberate (line 14b) at time ¢. Prior to ¢,
p changed TOS to a node other than node A or to null (line 12), and thereafter,
until node A is liberated, freed and reallocated, TOS does not point to node A.
Suppose that after time ¢, another thread q dereferences (at line 11 or line 13)
that instance of a pointer to node A. When ¢ last executes line 9d, at time #/,

5A particular pointer can be repeatedly allocated and freed, resulting in multiple instances of that
pointer. Thus, this property refers to threads that might dereference a pointer before that same
pointer is subsequently allocated again.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

152 . M. Herlihy et al.

struct nodeT int val; nodeT *next; int Pop() {
shared variable nodeT *TOS 7 nodeT *oldtos, *newtos;
initially NULL; 8 do {

9a do {
void Push(int v) { 9b oldtos = *TOS;
1 nodeT *oldtos, 9¢ PostGuard(oldtos);

*newnode = malloc(sizeof(nodeT)); 9d } while (*TOS != oldtos);

2 newnode—val = v; 10 if (oldtos == NULL) return “empty”;
3 do{ 11 newtos = oldtos—next;
4 oldtos = *TOS; 12} while (ICAS(&TOS, oldtos, newtos));
5 newnode—next = oldtos; 13 int val = oldtos—val;
6 } while (ICAS(&TOS, oldtos, newnode)); 14a PostGuard(NULL);
} 14b for each n in Liberate(oldtos)

14c free(n);
15 return val;

}
Fig. 2. Modified stack code.

prior to dereferencing the pointer to node A, g sees TOS pointing to node A.
Therefore, ¢’ precedes t. Prior to ¢/, ¢ guarded its pointer to node A (line 9c),
and keeps guarding that pointer until after it dereferences it, as required (note
that the pointer is guarded until g executes line 14a).

2.5 Guarantees of Liberate

While the above descriptions are sufficient to allow a programmer to correctly
apply our mechanisms to achieve dynamic-sized data structures, it may be
useful to understand in more detail the guarantees that are provided by the
Liberate function. Below we describe those guarantees, and argue that they
are sufficient, when PostGuard and Liberate are used properly as described
above, to prevent freed pointers from being dereferenced.

We say that a pointer begins escaping when Liberate is invoked with that
pointer. Every liberated pointer—that is, every pointer in the set returned by a
Liberate invocation—is guaranteed to have the following properties:

— It previously began escaping.

—1It has not been liberated (by any Liberate invocation) since it most recently
began escaping.

—1It has not been guarded continuously by any thread since it most recently
began escaping.

The first two conditions guarantee that every instance of a pointer is freed
at most once. They are sufficient for this purpose because threads only pass
pointers to Liberate when they would have, in the naive code, freed the pointers,
and threads free only those pointers returned by Liberate invocations.

The last condition guarantees that a pointer is not liberated while it might
still be dereferenced. To see that this last condition is sufficient, recall that the
programmer must guarantee that any pointer passed to Liberate at time ¢ will
be dereferenced only by threads that have already guarded the pointer at time ¢
and will keep the pointer guarded continuously until after such dereferencing.
The last condition prevents the pointer from being liberated while any such
thread exists.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 153

typedef int guard;
typedef (void *) ptr_t;

void PostGuard(guard g, ptr_t p);
guard HireGuard();

void FireGuard(guard g);
set[ptr_t] Liberate(set[ptr_t] S);

Fig. 3. An API for guarding and liberating.

3. A REPRESENTATIVE API

In this section, we present an application programming interface (API) for the
guarding and liberating mechanisms illustrated in the previous section. This
API is more general than the one used in the previous section. In particular, it
allows threads to guard multiple pointers simultaneously.

Our API uses an explicit notion of guards, which are posted on pointers. In
this API, a thread invokes PostGuard with both the pointer to be guarded and
the guard to post on the pointer. We represent a guard by an int. A thread can
guard multiple pointers by posting different guards on each pointer. A thread
may hire or fire guards dynamically, according to the number of pointers it
needs to guard simultaneously, using the HireGuard and FireGuard functions.
We generalize Liberate to take a set of pointers as its argument, so that many
pointers can be passed to Liberate in a single invocation. The signatures of all
these functions are shown in Figure 3. Below we examine each function in more
detail.

3.1 Detailed Function Descriptions
votid PostGuard(guard g, ptr_t p)

Purpose. Posts a guard on a pointer.

Parameters. The guard g and the pointer p; g must have been hired and not
subsequently fired by the thread invoking this function.

Return value. None.

Remarks. IfpisNULL then g is not posted on any pointer after this function
returns. If p is not NULL, then g is posted on p from the time this function
returns until the next invocation of PostGuard with the guard g. Note that it
is not guaranteed that g is posted on p between the invocation and return of
PostGuard. Thus, if PostGuard(g,p) is invoked at time ¢ and again at a later
time ¢’ (with no intervening operations concerning guard g), we cannot claim
that g has been posted continuously on p since time ¢.

guard HireGuard()

Purpose. “Acquire” a new guard.
Parameters. None.
Return value. A guard.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

154 . M. Herlihy et al.

Remarks. The guard returned is hired when it is returned. When a guard
is hired, either it has not been hired before, or it has been fired since it was last
hired.

void FireGuard(guard g)

Purpose. “Release” a guard.

Parameters. The guard g to be fired; g must have been hired and not sub-
sequently fired by the thread invoking this function.

Return value. None.
Remarks. g is fired when FireGuard(g) is invoked.

set[ptr_t] Liberate(set[ptr_t] S)

Purpose. Prepare pointers to be freed.

Parameters. A setofpointers to liberate. Each pointer in this set must either
never have begun escaping or have been liberated since it most recently began
escaping. That is, no pointer in this set was in any set passed to a previous
Liberate invocation since it was most recently in the set returned by some
Liberate operation.

Return value. A set of liberated pointers.

Remarks. The pointers in the set S begin escaping when Liberate(S) is in-
voked. The pointers in the set returned are liberated when the function returns.
Each liberated pointer must have been contained in the set passed to some in-
vocation of Liberate, and not in the set returned by any Liberate operation
after that invocation. Furthermore, Liberate guarantees for each pointer that
it returns that no guard has been posted continuously on the pointer since it
was most recently passed to some Liberate operation.

3.1.1 Comments on API Design. We could have rolled the functionality of
hiring and firing guards into the PostGuard operation. Instead, we kept this
functionality separate to allow implementations to make PostGuard, the most
common operation, as efficient as possible. This separation allows the imple-
mentation more flexibility in managing resources associated with guards be-
cause the cost of hiring and firing guards can be amortized over many PostGuard
operations.

In some applications, it may be desirable to be able to quickly “mark” a value
for liberation, without doing any of the work of liberating the value. (Consider,
for example, an interactive system in which user threads should not execute
relatively high-overhead “administrative” work such as liberating values, but
additional processor(s) may be available to perform such work.) We did not
provide such an operation, as it is straightforward to communicate such values
to a worker thread that invokes Liberate—our mechanisms do not need to know
anything about this.

3.1.2 Progress Guarantees. Two kinds of progress guarantees are desir-
able. First, we would like every invocation of an operation to eventually re-
turn. Minimally, any implementation should ensure that a thread failure can-
not prevent progress by operations being executed by other threads. (Even ifitis

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 155

acceptable to assume that threads do not fail in a particular application, long
delays—for example, due to preemption—should not prevent progress by other
threads during those delays.) A wait-free implementation guarantees for every
operation that it completes provided the thread executing it does not fail. A lock-
free implementation provides a slightly weaker guarantee: if a thread executes
an operation and does not fail, then some operation eventually completes.

In Section 6, we present a wait-free implementation of our API. This
implementation depends on a compare-and-swap (CAS) instruction that
can atomically manipulate a pointer and a version number. While such an
instruction is widely available in 32-bit architectures, it is not yet available in
some 64-bit architectures, so the wait-free implementation is not universally
applicable. Therefore, we also explain how to modify the algorithm so that it
does not require such an operation; the resulting implementation is technically
only lock-free, but in practice makes the same guarantees as the wait-free
implementation.

The second kind of desirable progress guarantee is value progress: if a pointer
begins escaping at some point and is eventually not trapped by any guard,
we would like the pointer to eventually be liberated—that is, to eventually be
returned by some Liberate operation. We call this type of property a value
progress condition because it refers to progress for a particular pointer value,
not progress for a thread executing an operation.

It is usually not possible to make this ideal value progress guarantee because
of the nature of asynchronous systems: without special operating system sup-
port it is generally impossible to distinguish between a thread being delayed
and failing. As a result, if a thread executing a Liberate operation fails, we
cannot free the pointers it was responsible for when it failed, because if the
thread is in fact only delayed, it might later free the pointers again.

Different implementations of our API may provide different value progress
guarantees under different assumptions, and the choice of implementations
to use for a particular application will depend on the validity of assumptions,
and tradeoffs between performance and strength of progress guarantees. While
it is inevitable that thread failures can prevent some pointers from being lib-
erated, for most applications, we must guarantee some limit on the number
of such pointers; otherwise we run the risk of unbounded memory leaks. The
implementation presented in Section 6 satisfies the Value Progress condition
specified in Section A.1, which implies that it does not allow unbounded memory
leaks even if some (finite) number of threads fail. Because the Value Progress
condition is stated for our API, rather than for a specific implementation, it is
somewhat difficult to understand the implications of meeting this condition. In
Section 6, we discuss the precise conditions under which a thread failure can
prevent a pointer from being liberated in our implementation.

4. DYNAMIC-SIZED LOCK-FREE QUEUES

In this section, we present two dynamic-sized lock-free queue implementations
based on a widely used lock-free queue algorithm by Michael and Scott [1998].
In Michael and Scott’s algorithm (M&S), the queue is represented by a linked

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

156 . M. Herlihy et al.

list, and nodes that have been dequeued are placed in a “freelist” implemented
in the style of Treiber [1986]. (In the remainder of the paper, we refer to freelists
as “memory pools” in order to avoid confusing “freeing” a node—by which we
mean returning it to the memory allocator through the free library routine—
and placing a node on a freelist.) In this approach, rather than freeing nodes
to the memory allocator when they are no longer required, we place them in
a memory pool from which new nodes can be allocated later. An important
disadvantage of this approach is that data structures implemented this way
are not truly dynamic-sized: after they have grown large and subsequently
shrunk, the memory pool contains many nodes that cannot be reused for other
purposes, cannot be coalesced, etc. We show how to modify M&S to achieve true
dynamic-sized queue implementations.

Our two queue implementations achieve dynamic sizing in different ways.
Algorithm 1 eliminates the memory pool, invoking the standard malloe and
free library routines to allocate and deallocate nodes of the queue. Algorithm 2
does use a memory pool, which reduces that cost of memory allocation and
deallocation compared with using malloc and free directly. However, unlike
M&S, the nodes in the memory pool can be freed to the system.

We present our algorithms by giving “generic code” for the M&S algorithm
(Figure 4). This code invokes procedures that must be instantiated to achieve
fullimplementations. We give the instantiations for the original M&S algorithm
and our new algorithms.

4.1 Michael and Scott’s Algorithm

The generic code in Figure 4 invokes four procedures, shown in italics in the
figure. We obtain the original M&S algorithm by instantiating these procedures
with those shown in Figure 5. The allocNode and deallocNode procedures use
a memory pool. The allocNode procedure removes and returns a node from the
memory pool if possible and calls malloc if the pool is empty. The deallocNode
procedure puts the node being deallocated into the memory pool. As stated
above, nodes in the memory pool cannot be freed to the system. Michael and
Scott do not specify how nodes are added to and removed from the memory pool.
M&S does not use guards, so GuardedLoad is an ordinary load and Unguard
is a no-op.

We do not describe M&S in detail; see Michael and Scott [1998] for such
details. We also do not argue it is correct; we refer the interested reader to
Doherty et al. [2004a] for a formal proof of a slight variation on this algorithm.
Below we discuss the aspects of M&S that are relevant to memory management.
In M&S, although nodes in the memory pool have been deallocated, they cannot
be freed to the system because some thread may still intend to perform a CAS
(line 12) on the node. As discussed in Section 1, various problems can arise from
accesses to memory that has been freed. Thus, although it is not discussed at
length in Michael and Scott [1998], the use of the memory pool is necessary for
correctness. Because Enqueue may reuse nodes from the memory pool, M&S
uses version numbers to avoid the ABA problem, in which a CAS succeeds even
though the pointer it accesses has changed because the node pointed to was
deallocated and then subsequently allocated. The version numbers are stored

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures .

struct pointer_t { node_t *ptr; int version; }
struct node_t { int value; pointer_t next; }
struct queue_t { pointer_t Head, Tail; }

queue_t *newQueue() {
queue_t *Q = malloc(sizeof (queue_t));
node_t *node = allocNode();
node—next.ptr = null;
Q—Head.ptr = Q—Tail.ptr = node;
return Q;

}

bool Enqueue(queue_t *Q, int value) {
1 node_t *node = allocNode();
2 if (node == null)

3 return FALSE;

4 node—value = value;

5 node—next.ptr = null;

6 while (TRUE) {

7 pointer_t tail;

8 GuardedLoad(0,&Q—Tail, &tail);

9 pointer_t next = tail.ptr—next;

10 if (tail == Q—Tail) {

11 if (next.ptr == null) {

12 if (CAS(&tail.ptr—next, next,
(node, next.version + 1}))

13 break;

14 } else

15 CAS(&Q—Tail, tail,

(next.ptr, tail.version + 1))

}

}
16 CAS(&Q—Tail, tail,
(node, tail.version + 1))
17 Unguard(0);
18 return TRUE;
}

157

bool Dequeue(queue_t *Q, int *pvalue) {

19 while (TRUE) {

20 pointer_t head;

21 GuardedLoad (0, &Q—Head, &head);

22 pointer_t tail = Q—Tail;

23 pointer_t next;

24 GuardedLoad (1, &head.ptr—next, &next);
25 if (head == Q—Head) {

26 if (head.ptr == tail.ptr) {
27 if (next.ptr == null) {
28 Unguard(0);
29 Unguard(1);
30 return FALSE;
31 CAS(&Q— Tail, tail,
(next.ptr, tail.version + 1))

32 } else {
33 *pvalue = next.ptr—value;
34 if (CAS(&Q—Head, head,

(next.ptr, head.version + 1)))
35 break;

}
}

36 Unguard(0);

37 Unguard(1);

38 deallocNode(head.ptr);
39 return TRUE;

}

Fig. 4. Generic code for M&S.

node_t *allocNode() {

void GuardedLoad(int h, pointer_t *s, pointer_t *t) {

1 if (memory pool is empty) 6 *t =*s;
2 return malloc(sizeof (node_t)); 7 return;
3 else { }
4 return node removed
from memory pool; void Unguard(int h) {
} 8 return;
} }

void deallocNode(node_t *n) {
5 add n to memory pool

}

Fig. 5. Auxiliary procedures for M&S.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

158 . M. Herlihy et al.

node_t *allocNode() { void GuardedLoad(int g, pointer_t *s, pointer_t *t) {
1 return malloc(sizeof (node_t)); 4 while (TRUE) {
} 5 ¥t = *g;
6 if (t—ptr == null)
void deallocNode(node_t *n) { 7 return;
2 for each m € Liberate({n}) 8 PostGuard(guards[p][g], t—ptr);
3 free(m); 9 if (¥t == *s)
} 10 return;

}
}

void Unguard(int g) {
11 PostGuard(guards[p][g], null);
}

Fig. 6. Auxiliary procedures for Algorithm 1. Code is shown for thread p.

with each pointer and are atomically incremented each time the pointer is
modified. This causes such “late” CAS’s to fail, but it does not prevent them
from being attempted.

The queue is represented by two node pointers: the Head, from which nodes
are dequeued, and the Tail, where nodes are enqueued. The Head and Tail
pointers are never null; the use of a “dummy” node ensures that the list al-
ways contains at least one node. When a node is deallocated, no path exists
from either the Head or the Tail to that node. Furthermore, such a path cannot
subsequently be established before the node is allocated again in an Enqueue
operation. Therefore, if such a path exists, then the node is in the queue. Also,
once a node is in the queue and its next field has become non-null, its next field
cannot become null again until the node is initialized by the next Enqueue op-
eration to allocate that node. These properties are used to argue the correctness
of our dynamic-sized variants of M&S.

4.2 Algorithm 1

Algorithm 1 closely follows the lock-free stack example in Section 2, eliminating
the memory pool and using malloc and free directly to allocate and deallocate
memory. As in the previous example, this use of our API also eliminates the
ABA problem, and thus, the need for version numbers. Thus, Algorithm 1 can
be used on systems that support CAS only on pointer-sized values.®
Algorithm 1 is achieved by instantiating the generic code with the procedures
shown in Figure 6. As in Section 2, we use ROP to ensure that every pointer
that may be dereferenced is trapped by some guard. We assume that before ac-
cessing the queue, each thread p has hired two guards and stored identifiers for
these guards in guards[p][0] and guards[pl[1]. The allocNode procedure simply
invokes malloc. However, because some thread may have a pointer to a node be-
ing deallocated, deallocNode cannot simply invoke free. Instead, deallocNode
passes the node being deallocated to Liberate and then frees any nodes returned
by Liberate. The properties of ROP ensure that a node is never returned by an
invocation of Liberate while some thread might still access that node.

6This of course requires that we use an implementation of our techniques that is applicable in such
systems. In Section 6, we present two implementations, one of which has this property.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 159

The GuardedLoad procedure loads a value from the address specified by its
second argument and stores the value loaded in the address specified by its third
argument. The purpose of this procedure is to ensure that the value loaded is
guarded by the guard specified by the first argument before the value is loaded.
This is accomplished by a lock-free loop that retries if the value loaded changes
after the guard is posted (null values do not have to be guarded, as they will
never be dereferenced). As explained below, GuardedLoad helps ensure that
guards are posted soon enough to trap the pointers they guard, and therefore
to prevent the pointers they guard from being freed prematurely. The Unguard
procedure removes the specified guard.

4.2.1 Correctness Argument for Algorithm 1. Algorithm 1 is equivalent to
M&S except for issues involving memory allocation and deallocation. (To see
this, observe that GuardedLoad implements an ordinary load, and Unguard
does not affect any variables of the M&S algorithm.) Therefore, we need only
argue that no instruction accesses a freed node. Because nodes are freed only
after being returned by Liberate, it suffices to argue for each access to a node,’
that, at the time of the access, a pointer to the node has been continuously
guarded since some point at which the node was in the queue (i.e., a node is
accessed only if it is trapped). As discussed earlier, if there is a path from either
Head or Tail to a node, then the node is in the queue. We can exploit code already
included in M&S, together with the specialization code in Figure 6, to detect
the existence of such paths.

We first consider the access at line 9 of Figure 4. In this case, the pointer to
the node being accessed was acquired from the call to GuardedLoad at line 8.
Because the pointer is loaded directly from Tail in this case, the load in line 9
of Figure 6 serves to observe a path (of length one) from Tail to the accessed
node. The argument is similarly straightforward for the access at line 12 and
the accesses in GuardedLoad when invoked from line 24.

The argument for the access at line 33 is not as simple. First, observe that
the load at line 9 of GuardedLoad (in the call at line 24 of Figure 4) determines
that there is a pointer from the node specified by head.ptr to the node accessed
at line 33. Then, the test at line 25 determines that there is a pointer from Head
to the node specified by head.ptr . If these two pointers existed simultaneously
at some point between the guard being posted as a result of the call at line 24
and the access at line 33, then the required path existed. As argued above, the
node pointed to by head.ptr is guarded and was in the queue at some point
since the guard was posted in the call to GuardedLoad at line 21, and this
guard is not removed or reposted before the execution of line 33. Therefore, by
the properties of ROP, this node cannot be freed and reallocated in this interval.
Also, in the M&S algorithm, a node that is dequeued does not become reachable
from Head again before it has been reallocated by an Enqueue. Therefore, the
load at line 25 confirmed that Head contained the same value continuously

7As stated earlier, it is sometimes possible to determine that a node will not be freed before certain
accesses without using ROP. The accesses in lines 4 and 5 of Figure 4 are examples because they
access a newly-allocated node that will not be freed before these statements are executed. Therefore,
there is nothing to argue for these accesses.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

160 . M. Herlihy et al.

since the execution of line 21. This in turn implies that the two pointers existed
simultaneously at the point at which the load in GuardedLoad invoked from
line 24 was executed.® This concludes our argument that Algorithm 1 never
accesses freed memory.

4.2.2 Eliminating Version Numbers in Algorithm 1. We now argue that
the version numbers for the node pointers are unnecessary in Algorithm 1. In
addition to eliminating the overhead involved with managing them, eliminating
these version numbers allows the algorithm to be used in systems that support
CAS only on pointer-sized values.

By inspecting the code for Algorithm 1, we can see that the only effect of
the version numbers is to make some comparisons fail that would otherwise
have succeeded. These comparisons are always between a shared variable V
and a value previously read from V. The comparisons would fail anyway if V'’s
pointer component had changed, and would succeed in any case if V had not
been modified since the V was read. Therefore, version numbers change the
algorithm’s behaviour only in the case that a thread p reads value A from V
at time ¢, V subsequently changes to B, and later still, at time ¢’, V changes
back to a value that contains the same pointer component as A, and p compares
V to A. With version numbers, the comparison would fail, and without them
it would succeed. We begin by arguing that version numbers never affect the
outcome of comparisons other than the one in line 9 of Figure 6; we deal with
that case later.

We first consider cases in which A’s pointer component is non-null. It can
be shown for each shared pointer variable V in the algorithm that the node
pointed to by A is freed and subsequently reallocated between times ¢ and ¢’ in
this case (see Lemma 1 below). Furthermore, it can be shown that each of the
comparisons mentioned above occurs only if a guard was posted on A before
time ¢ and is still posted when the subsequent comparison is performed, and
that the value read from A was in the queue at some point since the guard was
posted when the comparison is performed (see Lemma 2 below). Because ROP
prohibits nodes from being returned by Liberate (and therefore from being freed)
in this case, this implies that these comparisons never occur in Algorithm 1.

We next consider the case in which A’s pointer component is null. The only
comparison of a shared variable to a value with a null pointer component is
the comparison performed at line 12 (because the Head and Tail never contain
null and therefore neither do the values read from them). As argued earlier,
the access at line 12 is performed only when the node being accessed is trapped.
Also, as discussed earlier, the next field of a node in the queue does not become
null again until the node is initialized by the next Enqueue operation to allocate
that node. However, ROP ensures that the node is not returned from Liberate,
and is therefore not subsequently freed and reallocated, before the guard is
removed or reposted.

8The last part of this argument can be made much more easily by observing that the version number
(discussed next) of Head did not change. However, we later observe that the version numbers can
be eliminated from Algorithm 1, so we do not want to rely on them in our argument.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 161

It remains to consider the comparison in line 9 of Figure 6, which can have
a different outcome if version numbers are used than it would if they were not
used. We argue that this does not affect the externally observable behaviour
of the GuardedLoad procedure, and therefore does not affect correctness. The
only property of the GuardedLoad procedure on which we have depended for
our correctness argument is the following: GuardedLoad stores a value v in the
location pointed to by its third argument such that v was in the location pointed
to by GuardedLoad’s second argument at some point during the execution of
GuardedLoad and that a guard was posted on (the pointer component of) v be-
fore that time and has not subsequently been reposted or removed. It is easy
to see that this property is guaranteed by the GuardedLoad procedure, with or
without version numbers. This concludes our informal argument that version
numbers are not necessary in Algorithm 1. The following two lemmas support
the argument above.

LemmA 1. Suppose that in an execution of Algorithm 1, a thread p reads a
pointer value A from some shared pointer variable V at time t, V subsequently
changes to some other value B, and later still, at time t’, p again observes V
containing the same pointer component as A has. Then if A’s pointer component
is non-null, the node pointed to by it is deallocated and subsequently reallocated
between times t and t'.

Proor SkercH. This lemma follows from properties of the original Michael
and Scott algorithm; here we argue informally based on intuition about that
algorithm. The basic intuition is that a node pointed to by either the Head or the
Tail will not be pointed to again by that variable before the node is allocated
by an Enqueue operation, which cannot happen before the node has been freed.
For the next field of nodes, it is easy to see that the only modifications to these
fields are the change from null to some non-null node pointer (line 1) and the
initialization to null (line 12). Thus, if A is a non-null pointer value, then the
node pointed to by A must be deallocated and subsequently reallocated before
A is stored into the next field of any node. O

LeEmmA 2. Suppose that in an execution step of Algorithm 1 other than line 9
of Figure 6, a thread p compares a shared variable V to a value A, which p read
from V at a previous time t. Further suppose that the pointer component of A
is non-null. Then p posts a guard on the pointer component of A before time t
and the guard is not reposted or removed before the comparison. Furthermore,
at some time at or after t and before the comparison occurs, it is the case that this
value has not been passed to Liberate since it was last allocated (which implies
that the value is trapped when the comparison occurs).

Proor SkETcH. First, M&S has the property that a node is never deallo-
cated while a path from either the Head or the Tail to the node exists. Thus,
in Algorithm 1, if such a path is determined to exist, then a pointer to the
node has not been passed to Liberate since it was last allocated. Therefore, to
show that a node pointer is trapped, it suffices to show that such a path ex-
ists at some point after the guard is posted. The guards posted as a result of

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

162 . M. Herlihy et al.

pointer_t Pool; void deallocNode(node_t *n) {
12 pointer_t oldPool, newPool;
node_t *allocNode() { 13 while (TRUE) {
1 pointer_t oldPool, newPool, 14 oldPool = Pool;
2 while (TRUE) { 15 n—next.ptr = oldPool.ptr;
3 GuardedLoad(0, &Pool, &oldPool); 16 newPool.ptr = n;
4 if (oldPool.ptr == null) { 17 newPool.version = oldPool.version + 1;
5 Unguard(0); 18 if (CAS(&Pool, oldPool, newPool))
6 return malloc(sizeof (node_t)); 19 return;
} }
7 newPool = oldPool.ptr—next; }
8 Unguard(0);
9 newPool.version = oldPool.version + 1;
10 if (CAS(&Pool, oldPool, newPool)) {
11 return oldPool.ptr;

}

Fig. 7. Revised allocNode and deallocNode procedures for Algorithm 2 (GuardedLoad and Un-
guard are unchanged from Figure 6).

the calls to GuardedLoad at lines 8 and 21 are therefore always determined to
be trapping their respective values before GuardedLoad returns (by the test
at line 9). This is because in these cases GuardedLoad loads directly from
the Tail and the Head, so a path is trivially observed in these cases. There-
fore, the lemma holds for the comparisons on lines 10, 15, 16, 25, 31 (observe
that head.ptr = tail.ptr holds when line 31 is executed), and 34. The compar-
ison at line 12 always compares a value with a null pointer component, so the
lemma holds vacuously in that case. O

4.3 Algorithm 2

One drawback of Algorithm 1 is that every Enqueue and Dequeue operation
involves a call to the malloc or free library routine,® introducing significant
overhead. In addition, every Dequeue operation invokes Liberate, which is also
likely to be expensive. Algorithm 2 overcomes these disadvantages by reintro-
ducing the memory pool. However, unlike the M&S algorithm, nodes in the
memory pool of Algorithm 2 can be freed to the system.

Algorithm 2 is achieved by instantiating the generic code in Figure 4 with
the same GuardedLoad and Unguard procedures used for Algorithm 1 (see
Figure 6) and the allocNode and deallocNode procedures shown in Figure 7.
As in the original M&S algorithm, the allocNode and deallocNode procedures,
respectively, remove nodes from and add nodes to the memory pool. Unlike the
original algorithm, however, the memory pool is implemented so that nodes can
be freed. Thus, by augmenting Algorithm 2 with a policy that decides between
freeing nodes and keeping them in the memory pool for subsequent use, a truly
dynamic-sized implementation can be achieved.

The procedures in Figure 7 use a linked list representation of a stack
for a memory pool. This implementation extends Treiber’s straightforward

9The invocation of the free routine for a dequeued node may be delayed if that node is trapped
when it is dequeued. However, it will be freed in the Dequeue operation of some later node.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 163

implementation [Treiber 1986] by guarding nodes in the pool before accessing
them; this allows us to pass removed nodes to Liberate and to free them when
returned from Liberate without the risk of a thread accessing a node after it has
been freed. Our memory pool implementation is described in more detail below.

The node at the top of the stack is pointed to by a global variable Pool. We use
the next field of each node to point to the next node in the stack. The deallocNode
procedure uses a lock-free loop; each iteration uses CAS to attempt to add the
node being deallocated onto the top of the stack. As in Treiber’s implementation,
a version number is incremented atomically with each modification of the Pool
variable to avoid the ABA problem.

The allocNode procedure is more complicated. In order to remove a node from
the top of the stack, allocNode must determine the node that will become the
new top of the stack. This is achieved by reading the next field of the node that
is currently at the top of the stack. As before, we use ROP to protect against the
possibility of accessing (at line 7) a node that has been freed. Therefore, the node
at the top of the stack is guarded and then confirmed by the GuardedLoad call
at line 3. As in the easy cases discussed above for Algorithm 1, the confirmation
of the pointer loaded by the call to GuardedLoad establishes that the pointer
is trapped, because a node will not be passed to Liberate while it is still at the
head of the stack.

We have not specified when or how nodes are passed to Liberate. There are
many possibilities and the appropriate choice depends on the application and
system under consideration. One possibility is for the deallocNode procedure
to liberate nodes when the size of the memory pool exceeds some fixed limit.
Alternatively, we could have an independent “helper” thread that periodically
checks the memory pool and decides whether to liberate some nodes in order to
reduce the size of the memory pool. Such decisions could be based on the size
of the memory pool or on other criteria. There is no need for the helper thread
to grow the memory pool because this will occur naturally: when there are no
nodes in the memory pool, allocNode invokes malloc to allocate space for a new
node.

Observe that Algorithm 2 cannot be used in systems in which pointers are
64 bits and CAS can access only 64 bits atomically, because of the version num-
ber required by Treiber’s algorithm. Doherty et al. [2004b] present a “64-bit-
clean” freelist implementation that overcomes this problem. While this freelist
is somewhat more expensive than that of Treiber, this cost can be amortized
over several operations by some amount of per-thread buffering, for example,
as discussed further in Sections 5 and 8.

5. PERFORMANCE EXPERIMENTS

We now present the results of our performance experiments, which show that
the cost of being able to reclaim memory used by Michael and Scott’s lock-free
FIFO queue is negligible, provided contention for the queue is not too high,
and that it is modest even under high contention. Our experiments are quite
conservative, in that they do not incorporate obvious optimizations to reduce
synchronization and contention costs, some of which we discuss later.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

164 . M. Herlihy et al.

We ran experiments on several multiprocessor machines, with qualitatively
similar results on all of them. Below we present representative results from two
machines running Solaris"" 8: a Sun E6500 with 16 400 MHz UltraSPARC®
II processors and 16 GB of memory, and a Sun E10000 with 64 466 MHz
UltraSPARC® II processors and 64 GB of memory. In all of our experiments,
each point plotted represents the average execution time over three trials.

We compared Michael and Scott’s algorithm (M&S) against our dynamic-
sized versions of their algorithm in several configurations. In each configura-
tion, we used the Pass The Buck algorithm presented in the next section to solve
the Repeat Offender Problem. One configuration was achieved by instantiat-
ing the generic algorithm in Figure 4 with the procedures shown in Figure 6;
this version liberates each node as it is removed from the queue. We expected
this simplistic version to perform poorly because it invokes Liberate for every
dequeue and uses malloc and free for every node allocation and deallocation.
It did not disappoint! We therefore concentrate our presentation on M&S and
the two configurations described below.

In both configurations, we use the auxiliary procedures shown in Figure 7.
That is, dequeued nodes are placed in a memory pool. In the first configuration,
as in M&S, the nodes are never actually freed, so these tests measure the cost
of being able to free queue nodes, without actually doing so. This configuration
gives an indication of how the modified queue performs when no Liberate work
is being done (e.g., in a phase of an application in which we expect the queue
size to be relatively stable or growing). The second configuration is the same as
the first, except that we also create an additional thread that repeatedly checks
the size of the memory pool, and if there are more than ten nodes;® removes
some nodes, passes them to Liberate, and then frees the set of values returned
by Liberate. To be conservative, we made this thread run repeatedly in a loop,
with no delays between loop iterations. In practice, we would likely run this
thread only occasionally in order to make sure that the memory pool did not
grow too large.

Our first experiment tested the scalability of the algorithms with the number
of threads; this experiment was conducted on the 16-processor machine. The
threads performed 2,000,000 queue operations in total (each performing an ap-
proximately equal number of operations). We started with an empty queue, and
each thread chose at random between Enqueue and Dequeue for each opera-
tion. In this experiment, we tested the algorithm under maximum contention;
the threads executed the queue operations repeatedly with no delay between
operations. The results are shown in Figure 8(a). Qualitatively, all three con-
figurations behaved similarly. The performance became worse going from one
thread to two; this is explained by the fact that a single thread runs on a single
processor and therefore has a low cache miss rate, while multiple threads run on
different processors, so each thread’s cache miss rate is significantly higher. As
the number of threads increases beyond two, there is some initial improvement
gained by executing the operations in parallel. However, performance starts to

10Ty facilitate this check, we modified the code of Figure 7 to include a count field in the header
node of the memory pool.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 165

Scalability Experiment, 16 processors, D=0 Delay Experiment, 16 queuing threads on 16 processors

10000 18000

16000
8000 - 14000 +
o —~ 12000 |-
@] @
(43 1 (43
@ 6000 [Q
2 £ 10000 [
g E
© © 8000
£ 4000 - £
= = 6000
*
2000 PTB without liberator —+— 4000 |
PTB with liberator ---x---
M&S ---%- PTB without liberator —+—
2000 | PTB with liberator ---x---
M&S ---%---
° L o . .
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 0 500 1000 1500 2000 2500
Number of queuing threads Delay parameter
(a) (b)
Scalability Experiment, 16 processors, D=450 Scalability Experiment, 64 processors, D=6000
50000 ——— . T 100000 T T T T ; —
PTB without liberator —+— PTB without liberator —+—
PTB with liberator ---x--- PTB with liberator ---x---
45000 1 M&S ---%: M&S ---*
40000 - 80000
35000
3 2
S 30000 | 8 60000 |-
8 2
E 25000 E
g 20000 GE) 40000 -
- =
15000 -
10000 20000
X
5000 o SO -
0 - 0
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Number of queuing threads Number of queuing threads
(c) (d)

Fig. 8. Performance experiments.

degrade as the number of threads continues to increase. This is explained by
the increased contention on the queue (more operations have to retry because of
interference with concurrent operations). After the number of threads exceeds
the number of processors, all of the configurations perform more or less the
same for any number of threads.

While the three configurations are qualitatively similar, the M&S algorithm
performs significantly better than either of the other two configurations. This
difference is primarily due to the need to post guards, which we cannot avoid
using our approach, and the fact that every Dequeue operation immediately
puts the removed node into a single memory pool that is shared amongst all
threads. A variety of straightforward and standard techniques are applicable
to reduce the latter cost. For example, we could use multiple memory pools to
reduce contention and/or buffer removed nodes on a per-thread basis to avoid
memory pool access for most Dequeue operations. Tradeoffs regarding the size
of per-thread buffers are discussed in Section 8.

The results discussed so far compare the algorithms under maximum con-
tention, but it is more realistic to model some non-queue activity between each
queue operation. Figure 8(b) shows the results of an experiment we conducted
to study the effects of varying the amount of time between queue operations.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

166 . M. Herlihy et al.

In this experiment, we ran 16 threads on the 16-processor machine, and var-
ied a delay parameter D, which controlled the delay between operations as
follows: After each queue operation, each thread chose at random!! a number
between 90% and 110% of D, and then executed a short loop that many times;
the loop simply copied one local integer variable to another. The results show
that performance initially improves, despite the increase in the amount of work
done between operations increasing: a clear indication that this delay reduced
contention on the queue significantly. The effect of this contention reduction
comes sooner and is more dramatic for the M&S configuration than for either
of the other two. We believe that this is because the additional work of posting
guards on values already serves to reduce contention on the queue variables
in the other two configurations. After contention is reduced sufficiently that it
is no longer a factor, the time for all of the algorithms increases linearly with
the delay parameter. This happened at about D = 450 for M&S and at about
D = 900 for the other two configurations.

Next, we ran the scalability experiment again, using nonzero delay param-
eters. We chose D = 450 (where Figure 8(b) suggests that M&S is no longer
affected by contention, but the other two configurations still are) and D = 900
(where all configurations appear not to be affected by contention). The results
for D = 450 are shown in Figure 8(c). These results are more in line with simple
intuition about parallelism: performance improves with each additional proces-
sor. However, observe that the two configurations that incorporate the Pass The
Buck algorithm start to perform slightly worse as the number of threads ap-
proaches 16. This is consistent with our choice of D for this experiment: these
configurations are still affected by changes in the contention level at this point,
whereas M&S is not.

We also conducted a similar sequence of experiments on a 64-processor ma-
chine. (On the 64-processor machine, each trial performed 8,000,000 operations
in total across all participating threads.) The results were qualitatively simi-
lar on the two machines. However, the 64-processor counterpart to Figure 8(b)
showed the knee of the curve for the M&S configuration at about D = 4000
for M&S and at about D = 5500 for the other two configurations. This is ex-
plained by the fact that the ratio of memory access time to cycle time is larger
on the larger machine. We therefore conducted the scalability experiments for
D = 4000 and D = 6000 on this machine. The results for D = 4000 looked
qualitatively similar to the 16-processor results for D = 450. The results for
D = 6000 are shown in Figure 8(d). (The counterpart experiment on the 16-
processor machine with D = 900 yielded qualitatively similar results, with the
curve bottoming out at about 6000 ms.) Here we see that when there is little
contention, the results of the three configurations are almost indistinguishable.

Based on the above results, we believe that the penalty for using our dynamic-
sized version of the M&S algorithm will be negligible in practice: contention for

11 Anomalous behaviour exhibited by our initial experiments turned out to be caused by contention
on a lock in the random number generator; therefore, we computed a large array of random bits
in advance, and used this for choosing between enqueuing and dequeuing and for choosing the
number of delay loop iterations.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 167

a particular queue should usually be low because typical applications will do
other work between queue operations.

6. THE PASS THE BUCK ALGORITHM

In this section, we describe one ROP solution, the Pass The Buck (PTB) algo-
rithm in detail; we also describe an alternative algorithm that is simpler but
provides slightly weaker progress guarantees, at least in principle. To avoid con-
fusion and to emphasize the abstract nature of the ROP problem, we describe
our solution in terms of the values it manages, rather than referring to the
pointers that these values represent when the solution is used as described in
the previous sections.

Our primary goal when designing PTB was to minimize the performance
penalty to the application when no values are being liberated. That is, the
PostGuard operation should be implemented as efficiently as possible, perhaps
at the cost of a more expensive Liberate operation. Such solutions are desirable
for at least two reasons. First, PostGuard is necessarily invoked by the applica-
tion, so its performance always impacts application performance. On the other
hand, Liberate work can be done by a spare processor, or by a background thread,
so that it does not directly impact application performance. Second, solutions
that optimize PostGuard performance are desirable for scenarios in which val-
ues are liberated infrequently, but we must retain the ability to liberate them.
An example is the implementation of a dynamic-sized data structure that uses
a memory pool to avoid allocating and freeing objects under “normal” circum-
stances but can free elements of the memory pool when it grows too large. In
this case, no liberating is necessary while the size of the data structure is rela-
tively stable. With this goal in mind, we describe our Pass The Buck algorithm
below.

The Pass The Buck algorithm is shown in Figure 9. The GUARDS array
is used to allocate guards to threads. Here we assume a bound MG on the
number of guards simultaneously employed; it is straightforward to remove
this restriction [Herlihy et al. 2003]. The POST array consists of one location
per guard, which holds the value the guard is currently assigned to guard if
one exists, and null otherwise. The HNDOFF array is used by Liberate to “hand
off” responsibility for a value to a later Liberate operation if the value has been
trapped by a guard.

The HireGuard and FireGuard procedures essentially implement long-lived
renaming; we use the renaming algorithm presented in Anderson and Moir
[1997]. Specifically, for each guard g, we maintain an entry GUARDS|[g1, which
is initially false. Thread p hires guard g by atomically changing GUARDS|[g]
from false (unemployed) to true (employed); p attempts this with each guard in
turn until it succeeds (lines 2 and 3). The FireGuard procedure simply sets the
guard back to false (line 7). The HireGuard procedure also maintains the shared
variable MAXG, which is used by the Liberate procedure to determine how many
guards to consider. Liberate must consider every guard for which a HireGuard
operation has completed. Therefore, it suffices to have each HireGuard operation
ensure that MAXG is at least the index of the guard returned. This is achieved
with the simple loop at lines 4 and 5.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

168 . M. Herlihy et al.

struct { value val; int ver } HO_t value_set Liberate(value_set vs) {
// HO_t fits into CAS-able location 11 int i = 0;
constant MG: max. number of guards 12 while (i <= MAXG) {
shared variable 13 int attempts = 0;
GUARDS: array[0..MG-1] of bool 14 HO_t h = HNDOFF]i];
init false; 15 value v = POSTi];
MAXG: int init 0; 16 if (v != null && vs—search(v)) {
POST: array[0..MG-1] of value 17 while (true) {
init null; 18 if (CAS(&HNDOFF]i], h,
HNDOFF: array[0..MG-1] of HO_t (v, hover+1))) {
init (null, 0); 19 vs—delete(v);
20 if (h.val != null) vs—insert(h.val);
int HireGuard() { 21 break;
1 int i =0, max; }
2 while (ICAS(&GUARDS]i],false,true)) 22 attempts++;
3 i++; 23 if (attempts == 3) break;
4 while ((max = MAXG) < i) 24 h = HNDOFFi];
5 CAS(&MAXG,max,i); 25 if (attempts == 2 && h.val != null)
6 return i break;
} 26 if (v != POSTJi]) break;
void FireGuard(int i) { 27 }else {
7 GUARDSJ[i] = false; 28 if (h.val = null && h.val = v)
8 return 29 if (CAS(&HNDOFF(i], h, (null,
} h.ver+1)))
30 vs—insert(h.val);
void PostGuard(int i, value v) { }
9 POST[i] = v; 31 it
10 return }
} 32 return vs;
}

Fig. 9. Code for Pass The Buck.

PostGuard is implemented as a single store of the value to be guarded in the
specified guard’s POST entry (line 9), in accordance with our goal of making
PostGuard as efficient as possible.

The most interesting part of PTB lies in the Liberate procedure. Recall that
Liberate should return a set of values that have been passed to Liberate and
have not since been returned by Liberate, subject to the constraint that Liberate
cannot return a value that has been continuously guarded by the same guard
since before the value was most recently passed to Liberate (i.e., Liberate must
not return trapped values).

Liberate is passed a set of values, and it adds values to and removes val-
ues from its value set as described below before returning (i.e., liberating) the
remaining values in the set. Because we want the Liberate operation to be wait-
free, if some guard g is guarding a value v in the value set of some thread p
executing Liberate, then p must either determine that g is not trapping v or
remove v from p’s value set before returning that set. To avoid losing values,
any value that p removes from its set must be stored somewhere so that, when
the value is no longer trapped, another Liberate operation may pick it up and
return it. The interesting details of PTB concern how threads determine that a
value is not trapped, and how they store values while keeping space overhead

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 169

for stored values low. Below we explain the Liberate procedure in more detail,
paying particular attention to these issues.

6.1 The Liberate Procedure in Detail

The loop at lines 12 through 31 iterates over all guards ever hired. For each
guard g, if p cannot determine for some value v in its set that v is not trapped
by g, then p attempts to “hand v off to g”. If p succeeds in doing so (line 18),
it removes v from its set (line 19) and proceeds to the next guard (lines 21
and 31). If p repeatedly attempts and fails to hand v off to g, then, as we explain
below, v cannot be trapped by g, so p can move on to the next guard (lines 23
and 25). Also, as explained in more detail below, p might simultaneously pick
up a value previously handed off to g by another Liberate operation, in which
case this value can be shown not to be trapped by g, so p adds this value to its
set (line 20). When p has examined all guards (see line 12), it can safely return
any values remaining in its set (line 32).

We describe the processing of each guard in more detail below. First, however,
we present a central property of the correctness proof of this algorithm, which
will aid the presentation that follows; this lemma is quite easy to see from the
code and the high-level description given thus far; it is formalized in Invariant
12 of the correctness proof given in the appendix.

SINGLE LocarioN LEMMA. For each value v that has been passed to some invo-
cation of Liberate and not subsequently returned by any invocation of Liberate,
either v is handed off to exactly one guard, or v is in the value set of exactly
one Liberate operation (but not both). Also, any value handed off to a guard or
in the value set of any Liberate operation has been passed to Liberate and not
subsequently returned by Liberate.

The processing of each guard g proceeds as follows: At lines 15 and 16, p
determines whether the value (if any) currently guarded by g—call it v—isin its
set. If so, p executes the loop at lines 17 through 26 in order to either determine
that v is not trapped, or to remove v from its set. In order to avoid losing v in
the latter case, p “hands v off to g” by storing v in HNDOFF[g]. In addition to
the value, an entry in the HNDOFF array contains a version number, which,
for reasons that will become clear later, is incremented with each modification
of the entry.!? Because at most one value may be trapped by guard g at any
time, a single location HNDOFF[g] for each guard g is sufficient. To see why,
observe that if p needs to hand v off because it is guarded, then the value (if
any)—call it w—previously stored in HNDOFF[g] is no longer guarded, so p
can pick w up and add it to its set. (Because p attempts to hand off v only if v
is in p’s set, the Single Location Lemma implies that v # w.) The explanation
above gives the basic idea of our algorithm, but it is oversimplified; there are
various subtle race conditions that must be avoided. Below, we explain in more
detail how the algorithm deals with these race conditions.

12 A5 is usual with version numbers, we assume that enough bits are used for the version numbers
that “wraparound” is impossible in practice; see Moir [1997] for discussion and justification.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

170 . M. Herlihy et al.

To hand v off to g, p uses a CAS operation to attempt to replace the value
previously stored in HNDOFF[g] with v (line 18); this ensures that, upon suc-
cess, p knows which value it replaced, so it can add that value to its set (line 20).
We explain later why it is safe to do so. If the CAS fails due to a concurrent
Liberate operation, then p rereads HNDOFF[g] (line 24) and loops around to
retry the handoff. There are various conditions under which we break out of
this loop and move on to the next guard. In particular, the loop completes after
at most three CAS attempts; see lines 13, 22, and 23. (Because the CAS instruc-
tion is relatively expensive, it is worth noting that when our algorithm is used
as described in the previous sections, it uses CAS only when some thread is
still using a pointer that has already been removed from the data structure—a
transient condition that we expect to occur rarely.) It follows that our algorithm
is wait-free. We explain later why it is safe to stop trying to hand v off in each
of these cases.

We first consider the case in which p exits the loop due to a successful CAS at
line 18. In this case, as described earlier, p removes v from its set (line 19), adds
the previous value in HNDOFF[g] to its set (line 20), and moves on to the next
guard (lines 21 and 31). An important part of understanding our algorithm is to
understand why it is safe to take the previous value—call it w—of HNDOFF[g]
to the next guard. The reason is that we read POST[g] (line 15 or 26) between
reading HNDOFF|[g] (line 14 or 24) and attempting the CAS at line 18. Because
each modification to HNDOFF[g]increments its version number, it follows that
w was in HNDOFF[g] when p read POST[g]. Also, recall that w # v in this
case. Therefore, when p read POST[g], w was not guarded by g. Furthermore,
because w remained in HNDOFF[g] from that moment until the CAS, w cannot
become trapped in this interval. To see why, recall that a value can become
trapped only if it has not been passed to Liberate since it was last allocated.
However, each value in the HNDOFF array (including w) has been passed to
some invocation of Liberate and not yet returned by any invocation of Liberate
(and has therefore not been freed and reallocated since being passed to Liberate).

It remains to consider how p can break out of the loop without performing a
successful CAS. In each case, p can infer that v is not trapped by g, so it can
give up on its attempt to hand v off. If p breaks out of the loop at line 26, then
v is not trapped by g at that moment simply because it is not even guarded by
g. The other two cases (lines 23 and 25) occur only after a certain number of
times around the loop, implying a certain number of failed CAS operations.

To see why we can infer that v is not trapped in each of these two cases,
consider the timing diagram in Figure 10. (For the rest of this section, we use
the notation v, to indicate the value of thread p’s local variable v in order to
distinguish between the local variables of different threads.) In this diagram,
we construct an execution in which p fails its CAS three times. The bottom line
represents thread p: at (A), p reads HNDOFF[g] for the first time (line 14);
at (B), p’s CAS fails; at (C), p rereads HNDOFF[g] at line 24; and so on for
(D), (E), and (F). Because p’s CAS at (B) fails, some other thread gy executing
Liberate performed a successful CAS after (A) and before (B); choose one and
call it (G). (The arrows between (A) and (G) and between (G) and (B) indicate
that we know (G) comes after (A) and before (B).) Similarly, some thread q;

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 171

previous CAS
read succeeds
qz | |
previous read CAS (K) /i\
read POST[g] succeeds
q | !
cas) (M) /@N
succeeds
qo
p | [[I | [
(A) B) (O D) (E) (F)
read CAS read CAS read CAS
HNDOFFJg] fails HNDOFF[g] fails HNDOFF[g] fails

Fig. 10. Timing diagram illustrating interesting cases for Pass The Buck.

executes a successful CAS on HNDOFF([g] after (C) and before (D)—call it (H);
and some thread g2 executes a successful CAS on HNDOFF[g] after (E) and
before (F)—call it (I). (Threads go through gs might not be distinct, but there is
no loss of generality in treating them as if they were.)

Consider the CAS at (H). Because every successful CAS of HNDOFF[g] in-
crements its version number field, q;’s previous read of HNDOFF[g] (at line 14
or line 24)—call it (J)—must come after (G). Similarly, go’s previous read of
HNDOFF[g] before (I)—call it (K)—must come after (H).

We consider two cases. First, suppose (H) is an execution of line 18 by ¢;. In
this case, v, isin q1’s value set, and between (J) and (H), g1 read POST[g] = v,,,
either at line 15 or at line 26; call this read (L). By the Single Location Lemma,
because v, is in p’s set, v, # v,,, so the read at (L) implies that v, was not
guarded by g at (L). Therefore, v, was not trapped by g at (L), which implies
that it is safe for p to break out of the loop after (D) in this case (observe that
attempts, = 2 in this case).

For the second case, suppose (H) is an execution of line 29 by thread ¢;. In
this case, because ¢; is storing null instead of a value in its own set, the above
argument does not work. However, because p breaks out of the loop at line 25
only if it reads a non-null value from HNDOFF[g] at line 24, it follows that if
p does so, then some successful CAS stored a non-null value to HNDOFF|[g]
at or after (H), and in this case the above argument can be applied to that CAS
to show that v, was not trapped. If p reads null at line 24 after (D), then it
continues through its next loop iteration.

In this case, there is a successful CAS (I) that comes after (H). Because
(H) stored null in the current case, no subsequent execution of line 29 by any
thread will succeed before the next successful execution of the CAS in line 18
by some thread. To see why, observe that the CAS at line 29 never succeeds
while HNDOFF[g] contains null (see line 28). Therefore, for (I) to exist, there
is a successful execution of the CAS at line 18 by some thread after (H) and
at or before (I). Using this CAS, we can apply the same argument as before to
conclude that v, was not trapped. This argument is formalized in an appendix.
It is easy to see that PTB is wait-free.

As described so far, p picks up a value from HNDOFF[g] only if its value set
contains a value that is guarded by guard g. Therefore, without some additional
mechanism, a value stored in HNDOFF[g] might never be picked up from there.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

172 . M. Herlihy et al.

To avoid this problem, even if p does not need to remove a value from its set,
it still picks up the previously handed off value (if any) by replacing it with
null (see lines 28 through 30). We know it is safe to pick up this value by
the argument above that explains why it is safe to pick up the value stored
in HNDOFF[g] in line 18. Thus, if a value v is handed off to guard g, then
the first Liberate operation to begin processing guard g after v is not trapped
by g will ensure that v is picked up and taken to the next guard (or returned
from Liberate if g is the last guard), either by that Liberate operation or some
concurrent Liberate operation.

6.2 Progress Guarantees

As noted above, the PTB algorithm is wait-free: The FireGuard and PostGuard
procedures are obviously wait-free; they consist of straightline code. The
HireGuard procedure has two loops, both of which terminate after a finite num-
ber of iterations. The first loop increments i with every iteration and terminates
before i exceeds the total number of guards (see Anderson and Moir [1997]
or Herlihy et al. [2003]). The second loop terminates if MAXG > i; Otherwise,
it tries to set MAXG to i; if it does not succeed, some other thread must have
increased the value of MAXG, and because MAXG never decreases, this loop
has at most i iterations. Finally, the Liberate procedure is wait-free, as argued
above, because it executes the loop at lines 17 to 26 at most three times per
iteration of the outer loop, which it executes exactly once per guard.

To see that PTB guarantees the Value Progress property stated in Sec-
tion A.1, suppose a value v is passed to Liberate by a thread p at time ¢, and that
no thread fails after ¢. Suppose further that v is not guarded at some time #’
and that v remains unguarded after time ¢’ until v is liberated. Finally, suppose
that some thread invokes Liberate after time ¢’ (note that if ¢’ < ¢, this may be
the same as the invocation of Liberate by thread p).

We consider two cases. If ¢ > ¢/, p will never find v guarded and so it will
never try to hand v off, so v will be liberated when p returns from Liberate.
(Note that it does so because Liberate is wait-free and no thread fails after ¢.)

Otherwise, ¢t < ¢'. By the Single Location Lemma, if v is not liberated before
t’ (i.e., it is still escaping at time ¢’), then at time ¢’, v is either in the value set of
some thread g executing Liberate or in HNDOFF([i] for some i. In the first case, v
will be liberated when g returns from Liberate. (The Single Location Lemma also
implies that v was not in ¢’s value set immediately before time ¢ because it was
not escaping at that time. Therefore, ¢ added v to its value set at or after time ¢.
Because no thread fails at or after time ¢, this implies that ¢ eventually returns
from Liberate.) In the second case, the next thread that checks guard i will pick
up and liberate v. (Note that thread q implies the existence of such a thread.)

The Value Progress property stated in the appendix may seem somewhat
weak, because of its premise that no threads fail after time ¢. However, it is
important to note that, because threads cannot determine that there will be
thread failures in the future, they must behave exactly the same as if there
were none. Thus, the Value Progress property actually implies that any value
that is unguarded and is passed to Liberate is eventually liberated provided

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 173

value_set Liberate(value_set vs) {

11 int i = O;

12 while (i <= MAXG) {

13 value v = POST]i];

14 if (v != null && vs—search(v)) {

15 while (v != null && v == POST]i]) {

16 HO_t h = HNDOFF[i];
17 if (CAS(&HNDOFFJi], h, v)) {
18 vs—delete(v);
19 if (h.val != null) vs—insert(h.val);
20 v = HNDOFF[i];
}

}

21 }else {

22 HO_t h = HNDOFF[i];

23 if (h.val != null && h.val |=v)
24 if (CAS(&HNDOFF][i, h, null))
25 vs—insert(h.val);

}
26 it++;

}

27 return vs;

}

Fig.11. Lock-free Liberate using pointer-sized CAS. (Other operations are the same as in Figure 9.)

no threads fail while it is being liberated, even if threads do fail in the future.
The Value Progress property is stated the way it is because we express it as a
requirement of any implementation of our API.

For the PTB algorithm, we can state more precisely the conditions under
which a value that is unguarded and is passed to Liberate can fail to be liberated:
this occurs only if some thread fails while it is executing Liberate and has v in its
value set, or if it is in HNDOFFIi] for some i and no thread ever checks guard
i again. Because the size of the value set of each Liberate operation is bounded,
and the number of guards is bounded, this implies that only a bounded number
of values are ever passed to Liberate and not subsequently liberated, assuming
only a bounded number of threads fail. This is important when using PTB
to reclaim memory because it implies that a thread failure cannot cause an
unbounded memory leak. (See our discussion of Treiber’s algorithm [Treiber
1986] in Section 8.)

6.3 An Alternative Solution

A potential disadvantage of the PTB algorithm is that it relies on the abil-
ity to atomically manipulate a pointer and a version number using CAS. All
current 32-bit shared-memory multiprocessors we are aware of provide 64-bit
synchronization instructions (such as CAS) that support such techniques, and,
as pointed out by Michael [2002b], 128-bit synchronization instructions for 64-
bit architectures are likely to follow. Nonetheless, in the meantime, the PTB
algorithm presented above is not applicable in 64-bit architectures, so it is de-
sirable to modify the algorithm so that it is.

Figure 11 shows a simpler variant of the Liberate operation, which uses CAS
only on pointer-sized variables. This Liberate operation can be substituted for
the one shown in Figure 9, and makes the same correctness guarantees.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

174 . M. Herlihy et al.

In the Liberate operation in Figure 9, we can move on to the next guard after
at most three failures to hand off a value; as we reason above, the value cannot
be trapped by that guard in this case. However, this reasoning depended on
the version numbers, to show for example that event (J) occurs after event (G)
in Figure 10, which in turn implies that event (L) occurs within this execution
of Liberate, so we know that a value other than the one we are trying to hand
off was guarded by this guard. Without version numbers, this may not be true,
so we cannot reach the same conclusion. Similarly, we cannot be sure that a
value that we replace in POSTYi] is not now trapped by guard i. Therefore, if
our CAS fails we must retry, and even if it succeeds, we must check to see that
the replaced value is not now guarded (and therefore possibly trapped).

The advantages of the Liberate operation in Figure 11 are that it is simpler
and somewhat more widely applicable. The only disadvantage is that is only
lock-free, not wait-free. This is because the loop at lines 15-20 can in principle
loop repeatedly. We argue that this is extremely unlikely in practice, so this
disadvantage is just theoretical.

To see why, suppose that the CAS at line 17 repeatedly succeeds, but the loop
does not terminate. This requires the value in POST(i] to alternate between two
different values in perfect concert with the Liberate operation checking it at line
15. If a process guards one of these values during this time, then either it is
guarding a value that has already been passed to liberate, which implies that
it was slow to post the guard, or the value is liberated, recycled, and passed
to liberate again, and repeatedly stored in the HNDOFFIi], again in perfect
concert with the Liberate operation under consideration. It is inconceivable that
this would happen repeatedly.

Similarly, if the CAS at line 17 repeatedly fails, then other values are re-
peatedly stored in HNDOFFTIi], and the threads that store them observe those
values in POST([i]. Some of those threads may have observed those values a
long time ago, but eventually this is not the case, and we again have a situation
in which the value in POSTI[i] “conveniently” alternates between the value the
Liberate operation is trying to hand off and a different value. As in the pre-
vious case, this eventually requires repeated coincidences in which a value is
liberated, recycled, and reintroduced.

Because this Liberate is not wait-free, it also satisfies a slightly weaker value
progress property than the one described above. However, it still guarantees
that the delay or failure of a thread can prevent only a bounded number of
values from being liberated. Concretely, a value can be prevented from being
liberated only by a failed thread, or by an unlikely scenario such as the ones
described above, and in any case, only a bounded number of escaping values
are not liberated at any point in time.

7. SINGLE-WORD LOCK-FREE REFERENCE COUNTING (SLFRC)

In Section 4, we showed how to use ROP to make Michael and Scott’s lock-free
queue algorithm dynamic-sized. Although few changes to the algorithm were
required, determining that the changes preserved correctness required care-
ful reasoning and a detailed understanding of the original algorithm. In this

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 175

section, we present single-word lock-free reference counting (SLFRC), a tech-
nique that allows us to transform many lock-free data structure implementa-
tions that assume garbage collection (i.e., they never explicitly free memory)
into dynamic-sized data structures in a straightforward manner. This technique
enables a general methodology for designing dynamic-sized data structures, in
which we first design the data structure as if GC were available, and then we
use SFLRC to make the implementation independent of GC. Because SLFRC
is based on reference counts, it shares the disadvantages of all reference count-
ing techniques, including space and time overheads for maintaining reference
counts and the need to deal with cyclic garbage.

SLFRC is closely related to lock-free reference counting (LFRC) [Detlefs et al.
2001]. Rather than present all the details, we begin with an overview of LFRC
and present details only of the differences between SLFRC and LFRC. There-
fore, for a complete understanding of SLFRC, the reader should read [Detlefs
et al. 2001] first.

7.1 Overview of LFRC

The LFRC methodology provides a set of operations for manipulating pointers
(LFRCLoad, LFRCStore, LFRCCAS, LFRCCopy, LFRCDestroy, etc.). These
operations are used to maintain reference counts on objects, so that they
can be freed when no more references remain. The reference counts are not
guaranteed to be always perfectly accurate; they may be too high because
reference counts are sometimes incremented in anticipation of the future
creation of a new reference. However, such creations might never occur, for
example, because of a failed CAS. In this case, the LFRC operations decrement
the reference count to compensate.

Most of the LFRC pointer operations act on objects to which the invoking
thread knows that a pointer exists and will not disappear before the end of the
operation. For example, the LFRCCopy operation makes a copy of a pointer,
and therefore increments the reference count of the object to which it points. In
this case, the reference count can safely be accessed because we know that the
first copy of the pointer has been included already in the reference count, and
this copy will not be destroyed before the LFRCCopy operation completes.

The LFRCLoad operation, which loads a pointer from a shared variable into
a private variable, is more interesting. Because this operation creates a new
reference to the object to which the pointer points, we need to increment the
reference count of this object. The problem is that the object might be freed
after a thread p reads a pointer to it, and before p can increment its reference
count. The LFRC solution to this problem is to use DCAS to atomically confirm
the existence of a pointer to the object while incrementing the object’s reference
count. This way, if the object had previously been freed, then the DCAS would
fail to confirm the existence of a pointer to it, and would therefore not modify
the reference count.

7.2 From LFRC to SLFRC

The SLFRC methodology described here overcomes two shortcomings of LFRC:
it does not depend on DCAS, and it never allows threads to access freed objects.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

176 . M. Herlihy et al.

void SLFRCDestroy(Obj *ptr) { void SLFRCLoad(Obj **A, Obj **dest) {
1 if (ptr != null && add_to_rc(ptr, —1) == 1) { 10 Obj *a, *olddest = *dest;
2 // Recursively call SLFRCDestroy with each 11 long r;

// pointer in the object pointed to by ptr. 12 while (true) {
3 for each v € Liberate({ptr}) do 13 a=*A;
4 free(v); 14 if (a == null) break;
} 15 PostGuard(gp, a);
} 16 if (a == *A)

17 while ((r = a—rc) > 0)
long add_to_rc(Obj *ptr, int v) { 18 if (CAS(&a—rc, 1, 1+1))
5 long oldrc; 19 goto 20;

6 while (true) {
7 oldrc = ptr—rc; 20 if (a != null)
8 if (CAS(&ptr—rc, oldre, oldrc+v)) 21 PostGuard(gp, null);
9 return oldrc; 22 *dest = a;

} 23 SLFRCDestroy(olddest);
} }

Fig. 12. Code for SLFRCDestroy and SLFRCLoad. Code for add_to_rc is repeated from Detlefs
et al. [2001]. Code is shown for thread p; g, is a guard owned by p.

SLFRC provides the same functionality as LFRC does except that it does not
support a LFRCDCAS operation. The implementation of each SLFRC opera-
tion, except SLFRCLoad and SLFRCDestroy, is identical to its LFRC counter-
part. The implementations of these two operations, shown in Figure 12, are
discussed below.

SLFRC avoids the need for DCAS by using ROP to coordinate access to
an object’s reference count. To accommodate this change, the SLFRCDestroy
operation must be modified slightly from the LFRCDestroy operation used in
Detlefs et al. [2001]. The LFRCDestroy operation decrements the reference
count of the object O pointed to by its argument and, if the reference count be-
comes zero as a result, recursively destroys each of the pointers in O, and finally
frees O. The SLFRC version of this operation must arrange for pointers to be
passed to Liberate, rather than freeing them directly. When a pointer has been
returned by Liberate, it can be freed. One way to achieve this, which we adopt in
Figure 12, is to follow the simple technique used in Section 2: SLFRCDestroy
invokes Liberate directly, passing as a parameter the singleton set contain-
ing the pointer to be freed, and then frees all pointers in the set returned by
Liberate. Various alternatives are possible. For example, a thread might “buffer”
pointers to be passed together to Liberate later, either by that thread, or by
some other thread whose sole purpose is executing Liberate operations. The lat-
ter approach allows us greater flexibility in scheduling when and where this
work is done, which is useful for avoiding inconvenient pauses to application
code.

We now describe the SLFRCLoad operation and explain how it overcomes
the need for the DCAS operation required by LFRCLoad. In the loop at lines 12
to 19, SLFRCLoad attempts to load a pointer value from the location specified
by the argument A (line 13), and to increment the reference count of the object
to which it points (line 18). To ensure that the object is not freed before the
reference count is accessed, we employ ROP. Specifically, at line 15, we post a
guard on the value read previously. This is not sufficient to prevent the object

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 177

from being freed before its reference count is accessed: we must ensure that the
object being guarded has a nonzero reference count after the guard has been
posted. This is achieved by rereading the location at line 16: if the value no
longer exists in this location, then SLFRCLoad retries. (This retrying does not
compromise lock-freedom because some other thread successfully completes a
pointer store for each time around the loop.) If the pointer is still (or again)
in the location, then the object has not been passed to Liberate since it was
last allocated (because objects are passed to Liberate only after their reference
counts become zero, which happens only when no pointers to them remain).

If the value read at line 13 is null, then there is no reference count to update,
so there is no need to post a guard (see line 14). Otherwise, because of the
guarantees of ROP, it is safe to access the reference count of the object pointed
to by the loaded value for as long as the guard remains posted. This is achieved
by a simple lock-free loop (lines 17 to 19) in which we repeatedly read the
reference count and use CAS to attempt to increment it. Upon success, it simply
remains to remove the guard, if any (lines 20 and 21), arrange for the return of
the pointer read (line 22), and destroy the previous contents of the destination
variable (see lines 10 and 23).

Observe that we increment the reference count of an object only ifit is nonzero
(line 17); if the reference count becomes zero, we retry the outer loop to get a new
pointer. The reason for this is that if the reference count is zero, some thread
has already begun recursively destroying outgoing pointers from the object in
SLFRCDestroy, so it is too late to “resurrect” the object.

It is interesting to note that we could easily apply SLFRC to Michael and
Scott’s queue algorithm [Michael and Scott 1998],13 to achieve a dynamic-sized
version of that algorithm. However, because of the overhead associated with
reference counting, the resulting implementation would likely perform signifi-
cantly worse than the implementations we presented in Section 4, which were
achieved by applying our mechanisms directly, rather than through SLFRC.

8. RELATED WORK

In this section, we discuss other work on nonblocking implementations of
dynamic-sized data structures that do not depend on garbage collection.

One common approach is to augment values in objects with version numbers
or tags, and to access such values only through the use of CAS, such that if
a CAS executes on an object after it has been deallocated, the value of the
version number or tag will ensure that the CAS fails [Michael and Scott 1998;
Moir 1997; Treiber 1986]. In this case, the version number or tag value must be
carried with the object through deallocation and reallocation, which is usually
achieved through the use of explicit memory pools. As explained in Section 4,

13Because Michael and Scott’s algorithm stores pointers atomically with version numbers, some
minor and straightforward changes to (S)LFRC would be required for extracting actual pointer
values from stored values.

14These approaches are all forms of type stable memory (TSM), defined by Greenwald [1999] as
follows: “T'SM [provides] a guarantee that an object O of type T' remains type T as long as a
pointer to O exists.”

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

178 . M. Herlihy et al.

this approach results in implementations that cannot free memory that is no
longer required.

Valois [1995] proposed another approach, in which the memory allocator
maintains reference counts for objects in order to determine when they can be
freed. Valois’s approach allows the reference count of an object to be accessed
even after the object has been released to the memory allocator. This behaviour
restricts what the memory allocator can do with released objects. For example,
the released objects cannot be coalesced. Thus, the disadvantages of maintain-
ing explicit memory pools are shared by Valois’s approach. Furthermore, appli-
cation designers sometimes need to switch between different memory alloca-
tion libraries for performance or other reasons. Valois’s approach requires the
memory allocator to support certain nonstandard functionality, and therefore
precludes this possibility.

Interestingly, the previous work that comes closest to meeting the goal of this
article—to provide support for explicit nonblocking memory management that
depends only on standard hardware and system support—predates the work
discussed above by almost a decade. Treiber [1986] proposes a technique called
obligation passing.'® The instance of this technique for which Treiber presents
specific details is in the implementation of a lock-free linked list supporting
search, insert, and delete operations. This implementation allows freed nodes
to be returned to the memory allocator through standard interfaces and without
requiring any special functionality of the memory allocator. However, it employs
a “use counter” such that memory is reclaimed only by the “last” thread to access
the linked list in any period. As a result, this implementation can be prevented
from ever recovering any memory by a failed thread (which defeats one of the
main purposes of using lock-free implementations). Another disadvantage of
this implementation is that the obligation passing code is bundled together
with the linked-list maintenance code (all of which is presented in assembler
code). Because it is not clear what aspects of the linked-list code the obligation
passing code depends on, it is difficult to apply this technique to other situations.

Michael [2002a, 2004] has independently and concurrently developed an ap-
proach to nonblocking memory management that is basically the same idea as
ours. Technically, Michael’s algorithm is not a solution to the Repeat Offenders
Problem as we define it (see Appendix A). Nevertheless, Michael’s algorithm
can easily be adapted to conform to our interface, and to provide the safety
properties we require (liveness is another issue). Despite the fundamental sim-
ilarities between our work and Michael’s we have suggested some different
design choices; we discuss some of these choices and compare our approach to
Michael’s in more detail below.

Michael’s equivalent of the Liberate operation is called Scan. His algorithm
buffers to-be-freed pointers on a per-thread basis in order to control how many
are passed to Scan at a time. As mentioned in Section 5 some local buffering of
to-be-freed pointers is desirable to reduce contention and synchronization costs.

15We named our technique “Pass The Buck” before we were aware of Treiber’s work on obligation
passing, which indicates the similarity of the underlying philosophies of our approaches, although
the details are quite different.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 179

Michael’s approach is to have application threads process the buffers when they
become full, and to use large buffers in order to achieve an attractive amortized
bound on the time spent per pointer freed.

Using Michael’s buffering approach, there are typically O(GP) pointers that
could be freed but are not, where P is the number of participating threads, and
G is the number of “hazard pointers”—the equivalent of our guards. Clearly,
there is a tradeoff between the direct benefits gained from such buffering
and the space cost (and potential indirect performance effects thereof) for the
buffers. There is also a tradeoff between the cost of processing buffered point-
ers in application threads, and the cost of putting them into a shared memory
pool so that they can be reused or recycled in the background or on a different
processor.

Our opinion is that, as the number of threads increases, the cost of exe-
cuting Scan inline in application threads will become unacceptable for many
applications, despite the amortized cost, and it will be preferable to allow the
processing of to-be-freed pointers to be done in the background, or concurrently
on another processor, rather than burdening application threads with perform-
ing this work on their critical paths. Similar lessons have been learned in the
context of garbage collection [Bacon et al. 2001; Printezis and Detlefs 2000].

According to Michael [2004], it has been demonstrated experimentally that
his approach outperforms ours. However, he presents no data to support this
claim, and does not describe any implementation of our approach or any exper-
iments or metrics by which he has compared the approaches. We are not aware
of any head-to-head performance comparison of the two approaches. However,
we do not believe that such a comparison is useful or meaningful. The cost that
is fundamentally required by both approaches to be executed inline by appli-
cation threads is identical: posting a guard (or equivalently, setting a hazard
pointer) is a single store, followed by a memory barrier operation if required
in the target system. The best combination of per-thread buffering, recycling
through memory pools, and processing through Liberate (or equivalently Scan)
is highly dependent on the particular system and the requirements and be-
haviour of the particular application with respect to latency, memory usage,
etc. While we have made different choices in approaching the tradeoffs in our
presentation than Michael has in his, both approaches are equally amenable to
a variety of design choices to suit a particular situation.

Michael’s requirements for Scan are weaker than ours for Liberate. In par-
ticular, Scan may return some pointers to the buffer if they cannot yet be freed,
while our algorithm “hands off” such values. A possible advantage of these
weaker requirements is that Michael’s algorithm is very simple and needs only
read and write primitives, while ours requires CAS. However, note that CAS
(or an equivalent) is available in all modern shared-memory multiprocessors,
and is needed anyway for almost all practical lock-free data structures. Also we
do not expect our use of the relatively expensive CAS instruction in Liberate to
be detrimental to performance, because it uses CAS only under circumstances
we expect to be rare.

A disadvantage of Michael’s weaker requirement is that a thread may have
to wait for other threads in order to empty its buffer completely. If a thread

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

180 . M. Herlihy et al.

that wishes to terminate does so while pointers remain in its buffer, then those
pointers will never be freed, and even a single unfreed pointer might tie up a
large amount of memory. In contrast, our algorithm allows a thread to terminate
without waiting for other threads and without leaking memory. (We character-
ize the liveness property that facilitates this functionality more formally as the
Value Progress property stated in the appendix.) It is straightforward to com-
bine aspects of both algorithms, periodically interrupting Michael’s buffering
strategy with our more aggressive approach. For example, such a hybrid algo-
rithm could be configured to achieve the same amortized bound that Michael
favors while also satisfying the Value Progress property.

Michael [2002a] has shown how to apply his technique to dynamic-sized
implementations of different data structures such as queues, double-ended
queues, list-based sets, and hash tables. The interfaces and safety properties
of our approaches are similar enough that one could also use any ROP solution
for these examples. An advantage of using our PTB implementation of ROP is
that it satisfies the Value Progress condition.

9. CONCLUDING REMARKS

We have presented a set of mechanisms designed to support memory manage-
ment for nonblocking shared data structures. We have explained how these
mechanisms can be implemented and used, and we have provided a formal
proof of their correctness. We have used our mechanisms to achieve the first
dynamic-sized nonblocking shared data structures that cannot be prevented
from future memory reclamation by thread failures, and depend only on widely
available hardware support for synchronization. Our performance experiments
show that the overhead introduced by applying our techniques to the lock-free
FIFO queue of Michael and Scott is always modest, and is negligible under low
contention.

When designing the interface to our mechanisms, we paid particular atten-
tion to allowing much of the work to be scheduled separately from application
work. Future research includes experimenting with ways of doing this schedul-
ing in various application and system configurations, as well as applying our
techniques to the design of other data structures.

The ideas in this paper came directly from insights gained and questions
raised in our work on LFRC [Detlefs et al. 2001]. This demonstrates the value of
research that assumes stronger synchronization primitives than are currently
widely supported.

APPENDIXES
A. THE REPEAT OFFENDER PROBLEM

In this appendix, we define the Repeat Offender Problem (ROP), which captures
the abstract properties of the support mechanisms for nonblocking memory
management described in this paper. ROP is defined with respect to a set of
values, a set of application clients, and a set of guards. Each value may be
free, injail, or escaping; initially, all values are free. An application-dependent
external Arrest action can cause a free value to become injail at any time. A client

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 181

Liberate returns T,v € T

@ injai esw

| ——m—— >
Arrest(v) & Liberate(S),v € S

Fig. 13. Transition diagram for value v.

can help injail values to begin escaping, which causes them to become escaping.
Values that are escaping can finish escaping and become free again.

Clients can use values, but must never use a value that is free. A client can
attempt to prevent a value v from escaping while it is being used by “posting
a guard” on v. However, if the guard is posted too late, it may fail to prevent v
from escaping. Thus, to safely use v, a client must ensure that v is injail at some
time after it posted a guard on v. Clients can hire and fire guards dynamically,
according to their need.

ROP solutions can be used by threads (clients) to avoid dereferencing (using)
a pointer (value) to an object that has been freed. In this context, an injail pointer
is one that has been allocated (arrested) since it was last freed, and can therefore
be used.

ROP solutions provide the following procedures: A client hires a guard
by invoking HireGuard(), and it fires a guard g that it employs by invoking
FireGuard(g). An ROP solution ensures that a guard is never simultaneously
employed by multiple clients. A client posts a guard g on a value v by invoking
PostGuard(g, v); this removes the guard from any value it previously guarded.
(A special null value is used to remove the guard from the previously guarded
value without posting the guard on a new value). A client may not post (or re-
move) a guard that it does not currently employ. A client helps a set of values
S to begin escaping by invoking Liberate(S); the application must ensure that
each value in S is injail before this call, and the call causes each value to become
escaping. The Liberate procedure returns a (possibly different) set of escaping
values causing them to be liberated; each of these values becomes free on the
return of this procedure. These transitions are summarized in Figure 13. An
ROP solution does not implement the functionality of the Arrest action—this is
application-specific—but ROP must be aware of arrests in order to know when
a free value becomes injail.

If a guard g is posted on a value v, and v is injail at some time ¢ after g
is posted on v and before g is subsequently removed or reposted, then we say
that g traps v from time ¢ until g is removed or reposted. The operational
specification of the main correctness condition for ROP is that it does not allow
a value to escape (i.e., become free) while it is trapped.

A precise formulation of ROP is given by the I/O automaton shown in
Figure 14, explained below. (See Lynch and Tuttle [1989] for details of the I/O
automata model.) We begin by adopting some notational conventions.

Notational Conventions. Unless otherwise specified, p and ¢ denote clients
(threads) from P, the set of all clients (threads); g denotes a guard from G, the
set of all guards; v denotes a value from V, the set of all values, and S and T
denote sets of values (i.e., subsets of V). We assume that V contains a special
null value that is never used, arrested, or passed to Liberate.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

182 . M. Herlihy et al.
actions
Environment ROP output
Hirelnv,, () HireResp,,(g)
Firelnv,(g) FireResp,, ()

Postlnvy, (g, v)
Liberatelnv, (.5)
Arrest(v)

PostResp,, ()
LiberateResp,,(T')

transitions

Hirelnv, ()
Pre: pc, =idle
Eff: pc, = hire

Firelnv,(g)
Pre: pc, =idle
g € guards),
post[g] = null
Eff: pc, = fire
guards, = guards, — {g}

Postlnvy, (g, v)

Pre: pc, =idle
g € guards,,

Eff: pc, = post(g,v)
post[g] = null
trapping[g) = false

Liberatelnv, (.S)
Pre: pc, = idle
for all v € S,
v # null and status[v] = injail
Eff: pc, = liberate
numescaping = numescaping + |S|

for all v € S, status[v] = escaping
Arrest(v)
Pre: status[v] = free

v # null

Eff: status[v] = injail
for all g such that post[g] = v,
trapping[g] = true

state variables

For each client p € P:

pcy,: {idle, hire, fire, post(g,v), liberate}
init idle

p: set of guards init empty
For each value v € V:

status[v]: {injail, escaping, free} init free
For each guard g € G:

post[g] : V init null;

trapping|g] : bool init false;
numescaping: int init 0

guards

HireResp,,(g)
Pre: pc,, = hire
geqG
9 ¢ U, guards,
Eff: pc, = idle
guards, = guards, U {g}

FireResp,, ()
Pre: pc,, = fire
Eff: pc, = idle

PostResp,,()
Pre: for some g,v, pc,, = post(g, v)
Eff: pc, = idle

post[g] = v

trapping[g) = (status[v] = injail)

LiberateResp,, ()
Pre: pc, = liberate
forallv e T,
status[v] = escaping
and for all g € |J, guards,,
(post[g] # v or —trapping|g])
Eff: pc, = idle
numescaping = numescaping — |T|
for all v € T, status[v] = free

Fig. 14. 1/O Automaton specifying the Repeat Offender Problem.

The automaton consists of a set of environment actions and a set of ROP
output actions. Each action consists of a precondition for performing the action
and the effect on state variables of performing the action. Most environment
actions are invocations of ROP operations, and are paired with corresponding
ROP output actions that represent the system’s response to the invocations.
In particular, the Postinv,(g,v) action models client p invoking PostGuard(g,
v), and the PostResp,() action models the completion of this procedure. The
Hirelnv,() action models client p invoking HireGuard(), and the corresponding
HireResp,(g) action models the system assigning guard g to p. The Firelnv,(g)
action models client p calling FireGuard(g), and the FireResp,,() action models

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 183

the completion of this procedure. The Liberatelnv,(S) action models client p call-
ing Liberate(S) to help the values in S start escaping, and the LiberateResp ,(T")
action models the completion of this procedure with a set of values T' that have
finished escaping. Finally, the Arrest(v) action models the environment arrest-
ing value v.

The state variable status[v] records the current status of value v, which can
be free, injail, or escaping. Transitions between the status values are caused
by calls to and returns from ROP procedures, as well as by the application-
specific Arrest action, as described above. The post variable maps each guard
to the value (if any) it currently guards. The pc, variable models control flow
of client p, for example ensuring that p does not invoke a procedure before
the previous invocation completes; pc, also encodes parameters passed to the
corresponding procedures in some cases. The guards, variable represents the
set of guards currently employed by client p. The numescaping variable is an
auxiliary variable used to specify nontriviality properties, as discussed later.
Finally, trapping maps each guard g to a boolean value that is true iff g has
been posted on some value v, and has not subsequently been reposted (or re-
moved), and at some point since the guard was posted on v, v has been injalil
(i.e., it captures the notion of guard g trapping the value on which it has been
posted). This is used by the LiberateResp action to determine whether v can be
returned. (Recall that a value should not be returned if it is trapped.)

Preconditions on the invocation actions specify assumptions about the cir-
cumstances under which the application invokes the corresponding ROP pro-
cedures. Most of these preconditions are mundane well-formedness conditions,
such as the requirement that a client posts only guards that it currently em-
ploys. The precondition for Liberatelnv captures the assumption that the appli-
cation passes only injail values to Liberate, and the precondition for the Arrest
action captures the assumption that only free values are arrested. The appli-
cation designer must determine how these guarantees are made.

Preconditions on the response actions specify the circumstances under which
the ROP procedures can return. Again, most of these preconditions are quite
mundane and straightforward. The interesting case is the precondition of Liber-
ateResp, which states that Liberate can return a value only if it has been passed
to (some invocation of) Liberate, it has not subsequently been returned by (any
invocation of) Liberate, and no guard g has been continually guarding the value
since the last time it was injail (recall that this is captured by trappinglg]).

A.1 Desirable Properties

As specified so far, an ROP solution in which Liberate always returns the empty
set, or simply does not terminate, is correct. Clearly, in the context motivat-
ing our work, such solutions are unacceptable because each escaping value
represents a resource that will be reclaimed only when the value is liberated
(returned by some invocation of Liberate). One might be tempted to specify
that every value that begins escaping is liberated (i.e., every value passed to a
Liberate operation is eventually returned by some Liberate operation). However,
without special operating system support, it is not possible to guarantee such

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

184 . M. Herlihy et al.

a strong property in the face of failing threads. Nonetheless, some nontriviality
condition is necessary. In this section, we define the nontriviality condition that
our PTB algorithm satisfies.

As mentioned in Section 3, we specify two kinds of progress properties.
First, every ROP operation is wait-free: any thread that has invoked an ROP
operation—that is, its pc is not idle—will eventually complete that operation
provided that it continues to take steps. Second, the ROP implementation must
guarantee the following Value Progress property, which says that every value
that begins escaping will be liberated unless a thread fails after the value began
escaping or guards the value after the last invocation of Liberate:

Suppose that Liberatelnv,(S) with v € S occurs at time ¢, and that
no thread fails at or after this event. Suppose also that for all time
after some time ¢’, post[g] # v for all g € Uq guardsy, and that
Liberatelnv,(T') occurs at some time after ¢'. (If ¢’ < ¢, this event may
be the Liberatelnv,(S) event at time ¢.) Then LiberateResp(S’) with
v € S’ occurs at some time after ¢.

In addition to the progress properties above, PTB also bounds numescaping,
the number of escaping values, by a function of the maximum size of any set
passed to Liberate, the number of threads that may be concurrently executing
Liberate, and the number of guards hired. Specifically, if k = || » guards,|, s is
the maximum size of any set passed to Liberate and n is the number of threads
that may be concurrently executing Liberate, then numescaping< n(k + s).

B. FORMAL PROOF THAT PTB IMPLEMENTS ROP

In this appendix, we give a formal proof that the Pass the Buck algorithm (PTB)
of Section 6 implements ROP, that is, it solves the Repeat Offender Problem.

To prove that PTB implements ROP, we first define an I/O automaton
model [Lynch and Tuttle 1989] for the PTB algorithm and then show that this
automaton implements the ROP automaton in Section A.

The PTB automaton, which appears in Figures 15, 16 and 17, has the same
environment actions and output actions as the ROP automaton in Figure 14.

The PTB automaton also has internal actions that model the execution of
code that implements the operations. Because an action changes the state of
the automaton atomically, each action corresponds to code that includes at most
one access to shared variables. (Access to local variables always appears atomic
because other threads cannot see the effects of such access.) The names of the
internal actions indicate the lines of the code that implement them in Figure 9.
For line2-3,, an occurrence of the action corresponds to a single iteration of
the while loop. Not all lines of code are modeled by internal actions: Lines 1
and 11 are collapsed into the invocation actions because they access only local
variables, and lines 6, 8, 10 and 32 are modeled by the response actions. We
discuss the internal actions of Liberate in more detail below.

The PTB automaton specified here can be viewed as the composition of
two subautomata, representing the environment and the PTB algorithm, and
the state variables defined in Figure 15 can be partitioned between these

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 185

actions

Environment PTB output PTB internal

Hirelnv, () HireResp,,(g) line2-3,

Firelnv,(g) FireResp,, () lined,,

Postlnvy (g, v) PostResp,, () lineb,,

Liberatelnvy(S) LiberateResp,(T') line7p

Arrest(v) line9,,
linel2,
linel3+,
linel5+,
linel8+,
line22+-,
line25+-,
line28+-,
line31,

state variables

(internal PTB state variables)
GUARDS: array[0..MG-1] of bool init all false;
MAXG: int init 0;
POST: array[0..MG-1] of value init all null;
HNDOFF: array[0..MG-1] of value_set init all empty;
For each thread p € P:
Iny: {idle,2,4,5,6,7,8,9,10,12, 13,15, 18, 22, 25, 28, 31, 32} init idle
ip: int
vp: value
vsp: value_set
maxp: int
attempts,,: value

(environment state variables)

For each thread p € P:
pcy: {idle, hire, fire, post(h, v), liberate} init idle
guards,: set of guards init empty

For each value v € V:
status[v]: {injail, escaping, free} init free

For each guard g € G:
post[g): V init null
trapping|g]: bool init false

numescaping: int init 0

Fig. 15. Actions and state variables for the PTB automaton.

subautomata. The environment state variables are exactly the variables of the
ROP automaton. These variables are used to determine when the environment
actions are enabled. The internal PTB state variables represent state used by
the PTB algorithm. These consist of the shared global variables GUARDS,
POST, HNDOFF and MAXG; the local variables (including the parameters)
of each operation; and a local program counter /n, that records the next line of
code to be executed by thread p.

The environment actions of the PTB automaton are identical to their counter-
parts in the ROP automaton except that they may also set some local variables.
The response actions are enabled by the value of the local program counter
being equal to the line number corresponding to a return statement. They set
the program counter to idle and modify the environment state variables in the

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

186 . M. Herlihy et al.

HireGuard Hirelnv,() line4,,
Pre: pe, = idle Pre: In, =4
Eff: pc, = hire Eff: max, = MAXG
ip=0 if max, < ip then
Inp = 2 Inp =5
X else
line2-3, Inp = 6
Pre: In, =2
Eff: if ~GUARDS]ip] then line5;,
GUARDS][ip] = true Pre: lnp =5
Inp = 4 Eff: if MAXG = max, then MAXG = i,
else Inp = 4
tp = ip+1 HireResp,,(g)
Pre: In, =6
g=ip
Eff: In, = idle
pc, = idle
guards, = guards, U {g}
FireGuard Firelnv,(g) line7,
Pre: pc, = idle Pre: In, =7
g € guards, Eff: GUARDS[ip] = false
post[g] = null iny, = 8
- izz;rds ﬁ: guards, — {g} FireResp, ()
P 4 P Pre: inp =8
b9 Eff: In, = idle
np = 7 R
pc, = idle
PostGuard Postlnvy, (g, v) line9,,
Pre: pe, = idle Pre: In, =9
g € guards, Eff: POST[ip] = vp
Eff: pc, = post(g,v) Inp = 10

post[g] = null

trapping[g] = false PostResp), ()

v = v Pre: Inp =10
P Eff: In, = idle
ipb=g .
In, = 9 pep = idle
postlip] = vp
trappinglip] = (status[vp] = injail)
Arrest Arrest(v)
Pre: status[v] = free
v # null

Eff: status[v] = injail
for all g such that post[g] = v,
trapping(g] = true

Fig. 16. Transitions for the PTB automaton, part 1: All but Liberate.

same way as the ROP automaton does.'® Like the response actions, the internal
PTB actions are enabled by the local program counter having the appropriate
line number, and their effects clauses straightforwardly express the effects of
executing the corresponding lines of code.

In addition to the environment assumptions expressed in the ROP automa-
ton, the PTB algorithm assumes that the number of guards simultaneously

16That the environment state variables are modified in the same way by both automata is imme-
diate from the definition in all cases except that of PostResp actions. Invariant 1 below establishes
that in any reachable state of this automaton, the PostResp actions also update the environment
state variables in the same way as in the ROP automaton.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 187

Liberate Liberatelnv,(S) linel8-21,
Pre: pc, =idle Pre: Inp =18
for all v € S, Eff: if HNDOFF[ip] = hyp then
status[v] = injail HNDOFF[ip] = (vp, hp.ver + 1)
v # null vsp = vsp — {vp}
Eff: pc, = liberate if hp.val # null then
numescaping = numescaping + |S| vsp = vsp U {hp.val}
for all v € S, status[v] = escaping Inp = 31
vsp = S else
=0 Inp = 22
tnp = 12 line22-24,,
linel2, Pre: Inp = 22
Pre: Inp =12 Eff: attempts, = attempts, + 1
Eff: if i, < MAXG then if attempts), = 3 then
Inp = 13 Inp = 31
else else
Inp = 32 h, = HNDOFF[i,]
_ Inp = 25
linel3-14,
Pre: Inp =13 line25-26,,
Eff: attempts,, = 0 Pre: Inp = 25
h, = HNDOFF(ip] Eff: if (attempts, =2 A hp.val # null)
Inp = 15 V vp # POST][ip] then
. Inp = 31
linel5-17, |
else
Pre: Inp =15) Inp = 18
Eff: v, = POST(ip]
if vp # null A v, € vsp then line31,
Inp = 18 Pre: Inp =31
else Eff: i, =ip+1
Inp = 28 Inp = 12
line28-30, LiberateResp,,(T")
Pre: Inp = 28 Pre: Inp =32
Eff: if hp.val # null A hy.val # vy T =vsp
AHNDOFF[ip] = hy, then Eff: In, = idle
HNDOFF[ip] = (null, hy.ver + 1) pc, = idle
vsp = vsp U {hp.val} numescaping = numescaping — |T|
Inp = 31 for all v € T, status[v] = free

Fig. 17. Transitions for the PTB automaton, continued: Liberate.

employed (including those in the midst of being hired or fired) is bounded by
MG,; the set G of guards is {0, ..., MG — 1}. Failure to satisfy this assumption
may result in an attempt at line 2 to write beyond the end of the POST array,
possibly overwriting unrelated data structures and causing arbitrary failures.
As in the code in Figure 9, we simply assume that this does not happen; we do
not specify the behavior of the automaton when i, > MG in the execution of
either line2-3,, or line7,.

We now prove several invariants and lemmas about the PTB automaton.
Of these, Invariants 1, 2, 12 and 18 are the ones actually used in the proof
of Theorem B.5, which says that PTB implements ROP. The rest are used to
prove Invariants 12 and 18. Informally, Invariant 1 says that pc, has the ap-
propriate value when p is executing a PTB operation. Invariant 2 says that
every guard is employed by at most one thread, and that if g is employed then

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

188 . M. Herlihy et al.

GUARDS[g] = true.!” Invariant 12 says that the escaping values are those
that appear in the HNDOFF array or in the vs, set of some thread p with
pc, = liberate, and that each escaping value appears in exactly one of these
locations. Invariant 18 says that if a guard g traps a value v and v is in the
vs, set of some thread executing Liberate, then that thread has not yet finished
processing g.

We prove most invariants by induction on the number of transitions in an
execution. That is, we prove that the invariant holds in the initial state and
that for each reachable state s, if the invariant holds in s and s — s’ then the
invariant holds in s’. For many of the invariants, checking this is straightfor-
ward, and we omit the details of the proof. Because we assume s (and thus s’)
is reachable, we can assume the earlier invariants hold in s and s’ in the proofs
of later invariants.

Invariant 1. Ifln, € {2, 4,5, 6}, then pc, = hire. If In, € {7, 8}, then pc, =
fire. IfIn,, € {9, 10}, then pc, = post(i,, v,). Ifin, € {12, 13, 15, 18, 22, 25, 28, 31,
32}, then pc, = liberate.

Proor. Straightforward by induction. O

INvARIANT 2. Every guard g is in exactly one of the following sets: guards,
for some p, {i,} for some p with In, € {4,5,6, 7}, or {g : ~=GUARDS[g]}.

Proor. This invariant holds initially because guards, is empty and and
—~GUARDS|[g] for all g. Suppose that the invariant holds in s and that s > s'.
Let S, be {i,} if In, € {4,5,6,7} and @ otherwise. The only actions that
change any of the sets listed in the invariant are line2-3, for some p with
—-s.GUARDS]s.i,], HireResp,(g) and Firelnv,(g) for some p and g, and line7,
for some p. In each case, one guard is removed from one set and added to an-
other, so the invariant is preserved.

For line2-3, with —s.GUARDSIs.i,], s.i,, is removed from {g : = GUARDS[g]}
and added to S,.

For HireResp,,(g), g = s.ip, s.ln, = 6 and s".In;, = idle, so g is removed from
S, and added to guards,,.

For Firelnv,(g), g is removed from guards, and added to Sp.

Finally, for line7,, si, is removed from S, and added to {g:—
GUARDS[gl}. O

INVARIANT 3. Forall p, In, € {9, 10} = i, € guards,,.

Proor. Straightforward by induction. O

InvariaNT 4. For all p and q, if In, € {9, 10} and In, € {9, 10}, then i, # i,.
Proor. Immediate from Invariants 2 and 3. O

InvarRIANT 5. For all p, In, = 10 = POST[i,] = v,.

Proor. Straightforward by induction with Invariant 4. O

17To make it provable by induction, the actual invariant is strengthened slightly. This is also true
for Invariant 18.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 189

InvariaNT 6. Forall g,

null if A(n, €(9,10) Aip = g)

tle] =
postlg] POSTIg] otherwise.

Proor. Straightforward by induction with Invariants 1,4 and 5. O
InvariaNT 7. For all p, In, =5 = max, < ip.

Proor. Straightforward by induction. O

InvariaNT 8. Forall p, In, € {2,4,5} =i, > 0.

Proor. Straightforward by induction. O

InvariaNT 9. For all g and p, if g € guards, or Iln, = 6 Ai, = g then
0 < g < MAXG.

Proor. Straightforward by induction with Invariants 7 and 8. O
InvariaNT 10. Forall g, if postlg] # null then 0 < g < MAXG.
Proor. Straightforward by induction with Invariants 3, 7and 9. O
InvariaNT 11. Forall p, if In, € {18, 22, 25} then v, € vs,,.

Proor. Straightforward by induction. O

InvariaNT 12. Every non-null value is in exactly one of the following sets:
{HNDOFF|gl.value} for some g, vs, for some p with pc, = liberate, and
{v : statuslv] # escaping}.

Proor. This invariant holds initially because HNDOFF[g].value = null
for all g, pc, = idle for all p, and status[v] = injail # escaping for all v. Suppose
that s is a reachable state in which the invariant holds, and that s — s'. Let
HS, = {HNDOFF[g].value} and VS, be vs,, if pc, = liberate and @ otherwise.
With Invariant 1, it is easy to see that the only actions that change any of the
sets in the invariant are Liberatelnv,(S) and LiberateResp,(S) for some p and
S, line18-21,, for some p with s HNDOFF[s.i,] = s.h,, and line28-30,, for some
p with s.h,.value ¢ {null,s.v,} and s HNDOFF[s.i,] = s.h,.

For Liberatelnv,(S), every value in S is removed from {v : statuslv] #
escaping} and added to VS,,.

For LiberateResp,(S), s.pc, = liberate by Invariant 1, so S = VS,,. Thus,
every value in S is removed from VS, and added to {v : status[v] # escaping}.

For line18-21, with s HNDOFF[s.i,] = s.h,, values other than s.v, and s.h,
are not added to or removed from any of the sets. By Invariant 11, s.v, €
s.vs, (because s.In, = 18), so s.v,, is removed from VS, and added to HS;;,. If
s.h,.value # null then by the inductive hypothesis, s.h, ¢ s.vs, and so s.h,, is
removed from HS;;, and added to VS,,.

For line28-30,, with s.h,.value ¢ {null, s.v,} and s HNDOFF[s.i,] = s.h,, by
the inductive hypothesis, s.h,.value ¢ s.vs, and so s.h,.value is removed from
HS;;, and added to VS,,.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

190 . M. Herlihy et al.

Thus, the invariant that each value is in exactly one of the sets is pre-
served. O

InvariaNT 13. For all p, if In, € {15,18,22,25,28,31)}, then hpver <
HNDOFFTi,].ver.

Proor. Straightforward by induction. O

Lemma B.1. Forall p and g, if s is a reachable state in which s.i, = g and

s.hp, # sHNDOFF(g], and s 5 ¢, then s'.h, # s HNDOFF[g] or a € {line13-
14,, line22-24,,. }

Proor. Fix p and g. Ifa ¢ {line13-14,, line22-24,} then s’"’h, = s.h, and,
unless there is some g with si;, = g, shy, = sHNDOFF[g] and ei-

ther ¢ = line18-21, or a = 1ine28-30, and sh,.value ¢ {(null, s.v,},
s’ " HNDOFF[g] = s. HNDOFF[g]. If there is such a ¢ then s HNDOFF[g].ver =
s. HNDOFF[glver + 1, and by Invariant 13, s"h,ver = shyver <

s. HNDOFF[g].ver, so s’ h, # s HNDOFF([g]. O

LemMa B.2. For all g and v # null, if s is a reachable state, s > s, and
s'.postlg] = v and s'.trappinglg] then either s.postlg] = v and s.trappinglg] or
s'.status[v] = injail.

Proor. Fix g and v. If s’.post[g] = v and s'.trappinglg] and s.post[g] #
v V —s.trappingl g then eithera = PostResp,() for some p withs.i, = g,s.v, =
v and s.status[v] = injail, or a = Arrest(v) with s.post[g] = v. In either case,
s'.statuslv] = injail. O

INvaRIANT 14. For all g, v # null and p, if postlg] = v = HNDOFF|[g].
value, trappinglg]l, i, = g and h, = HNDOFFI[g] then In, # 18 and In, =
28 = v, =v.

Proor. Fix g, v and p. This invariant holds initially because trappinglg] =
false. Suppose it holds in a reachable state s, s — s/, s'.postlg] = v =
s HNDOFF[g].value , s".trappinglgl, and s".h, = s HNDOFF[g].

Ifsi, # g thens'.i, # g ors'.In, ¢ {18, 28}, so the invariant holds in s’.

Ifsi, = g ands.h, # s HNDOFF[g], then, by Lemma B.1, because s’ h, =
s’ HNDOFF[g], we have a = {line13-14,, line22-24,}, so s'.In,, ¢ {18, 28}.

If s HNDOFF[g]l.value # vthena =line18-21, for some q withs.i; = g and
s.h, = sHNDOFF[g]. If s'.ln, ¢ {18,28} then the invariant holds in s’
Otherwise, s'.In, € {18,28}, so s.n, € {18,28} (because ¢ = line18-21,,
so p # q). In the latter case, by Invariant 13, s.h,.ver < s HNDOFF[g].ver, and
because s HNDOFF([g].ver = s HNDOFF([glver + 1 and s".h,.ver = s.h,.ver,
we have s".h, # s" HNDOFF[g], so the invariant holds in s’.

Otherwise, s HNDOFF[g].value =v,s.i, = g and s.h, = s HNDOFF[g].
By Invariant 12, s’ .status[v] = escaping # injail, so by Lemma B.2, s.post[g] = v
and s.trappinglg]. Thus, by the inductive hypothesis, s.In, # 18 and s.ln, =
28 = sv, =v.Ifa ¢ {line15-17,, line25-26,} then s'.ln, # 18 and s'.ln, =
28 = s’.v, = v, so the invariant holds in s’. Otherwise, s.In, € {15, 25}, so by

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 191

Invariant 1, s.pc, = liberate, and by Invariant 12, v ¢ s.vs,. Also, by Invariant 6,
s.POST[g] = s.postlg] =v.

Ifa =line15-17, thens'.v, = s.POST[g] = v and s'.In, = 28, so the invariant
holds in s'.

Ifa =line25-26, then by Invariant 11,s.v,, € s.vsp,so0s.v, # v =s.POST[g].
Thus, s'.In, = 31 and the invariant holdsins’. O

Lemma B.3. For all g, v # null and p, if s is a reachable state, s = s,
spostlg]l = v = sHNDOFF[glvalue, s.trappinglg]l, si, = g and s.in, €
{18, 28} then v ¢ s'.vsp,.

Proor. Because v = s HNDOFF[g].value, by Invariants 1 and 12, v ¢ s.vs,,.
Either s'.vs, =s.vs,, and sov ¢ s'.vs,, as required, or ¢ € {line18-21,, line28-
30,} and s.h, = s.HNDOFF[s.i,]. In the latter case, because s.i, = g and
s.In, € {18, 28}, by Invariant 14, we have s.In, # 18 and s.v, =v ¢ s.vs,. Thus,
a =1ine28-30,, and because s.h,.value =v,v ¢ s.vs, =s'.vs,. O

Lemma B.4. Forall g and p, if s 59, s'i, = g and s'.In, € {15, 18, 22, 25},
then s.i, = g and s.vs, = s .vsp.

Proor. Straightforward by inspection. O

InvarianT 15. For all g, v # null, p and q # p, if postlg]l = v € vsp,
trappinglgl i, =i, = g, In, € {15, 18, 22, 25}, In, = 18 and h, = HNDOFF|g]
then h, = HNDOFF[g], attempts, =0 and in, # 22.

Proor. Fix g, v, p and ¢q. This invariant holds initially because
trappinglg) = false. Suppose that it holds in a reachable state s, s — s/, and
s'.post[g]l =v € s'.vs,, s'.trappinglg]l, s'i, =i, = g, s .In, € {15,18, 22, 25},
§'Ing = 18 and s"h, = s HNDOFF[g]. By Lemma B.4, si, =s.i, = g and
v €svs, =5 .vsp.

Ifs.in, ¢ {15, 18, 22,25}, then a =1ine13-14,, so s".h, = s HNDOFF[s.i,] =
s HNDOFF[g], s".attempts, =0 and s".In, = 15 # 22, as required.

Otherwise, s.ln, € {15, 18,22, 25}, so by Invariant 1, s.pc, = liberate, and
by Invariant 12, s'.status[v] = escaping # injail (because v € s'.vsp), so by
Lemma B.2, s.postlg] = v and s.trappinglg]. Because s'.ln, = 18, we have
a ¢ {line13-14,, line22-24,}, so by Lemma B.1, s.h, = s HNDOFF[g]. Also,
s.ny; = 18 because otherwise, either ¢ = line15-17, and s. POST[g] € s.vs,
ora = line25-26, and s.v, = s.POST[g], which, by Invariant 11, also implies
s.POST[g] € s.vs,. However, both these cases are impossible because, by Invari-
ant 6, s.POST[g] = v, and by Invariants 1 and 12, v ¢ s.vs, because v € s.vs,
and p #q.

Thus, by the inductive hypothesis, s.h, = s HNDOFF[g], s.attempts, =0
and s.In, # 22. So s'.attempts, = s.attempts, = 0, and s"h, = sh, =
s.HNDOFF[g]. Because s.ln, = s'.Inplq] = 18, we have s’".h, = s.h,, thus,
s"h, = s. HNDOFF[g] = s.h; = s"h; = s HNDOFF[g]. Finally, s'.ln, # 22
because s.In, # 22 and s HNDOFF([s.i,] = s.h,. Thus, the invariant holds
ins. O

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

192 . M. Herlihy et al.

InvariaNT 16. For all p, In, = 15 = attempts, = 0.

Proor. Straightforward by induction. O

INvarIANT 17. Forall p, if In, = 22 then h, # HNDOFFTi,].

Proor. Straightforward by induction with Lemma B.1. O

InvaRIANT 18. Forall g and v # null, if postlg] = v and trappinglg], then

(1) forall h > g, v + HNDOFF[h]lvalue;

(2) for all p, if pc, = liberate and v € vs,, then In, € {12, 13, 15, 18, 22, 25, 28,
3l}andi, < g;

(3) for all p, if pc, = liberate, v € vsp, i, = g and In, = {18, 22, 25, 28, 31},
then
—Vp =0,
—lIn, ¢ {28, 31},
—attempts, = 2= h, = HNDOFF[g] A hp.value = null,
—attempts, = 1= h, = HNDOFF[g] v HNDOFF[g]lvalue = null

Proor. Fix g and v. This invariant holds initially because trappinglg] =
false. Suppose it holds in a reachable state s, s — s/, and s postlg] = v
and s'.trappinglg]. By Lemma B.2, either s.post[g] = v and s.trappinglg]
or s'.status[v] = injail # escaping. In the latter case, by Invariant 12, v #
s HNDOFF[h].value for all 4 and v ¢ s'.vs, for any p such that pc, = liberate,
so this invariant holds in s'. For the rest of the proof, we consider the case in
which s.post[g] = v and s.trappinglg].

For the first clause, fix A > g. By the inductive hypothesis,
v # s.HNDOFF[h].value, and thus, v # s HNDOFF[A].value unless a =
line18-21,, for some p with s.i, =h,s.v, =v andsh, =sHNDOFF[A]. How-
ever, if this action is enabled in s then s.ln, = 18, so by Invariant 1, s.pc, =
liberate, and by the inductive hypothesis (second clause), either v ¢ s.vs, or
s.i, < g. The first possibility contradicts Invariant 11 because s.v, = v; the
second contradicts s.i, =#h > g. Thus, v # s HNDOFF[A].value .

For the second and third clauses, fix p. If s.pc, # liberate then either s’.pc;, #
liberate, in which case these clauses hold in s/, or a = Liberatelnv(S) for some
S. In the latter case, s'.In, = 12 and, by Invariant 10, s".i, = 0 < g, so both
clauses hold in s'.

If s.pc, = liberate and v ¢ s.vs, then either v ¢ s'.vs,, in which case both
clauses hold in s’, or @ € {line18-21,, line28-30,}, s HNDOFF([s.i,] = s.h, and
s.h,.value = v.Inthelattercase,s’.In, = 3lands’.i, =s.i, < g becausebythe
inductive hypothesis (first clause), s HNDOFF([].value # v = s HNDOFF[s.i,]
for all ~ > g. Furthermore, because s.ln, < {18,28}, if si, = g then by
Lemma B.3, v ¢ s'.vs,. So both clauses hold in s'.

It remains only to check the case in which s.pc, = liberate and v € s.vs,. By
the inductive hypothesis (second clause), s.ln, € {12, 13, 15, 18, 22, 25, 28, 31}
and s.i, < g.Thus,s".in, € {12,13, 15,18, 22,25,28,31} and s’.i, < g unless
eithera =line12, ands.i, > s.MAXGora =Iline31, ands.i, = g. The first
case is impossible because, by Invariant 10, s MAXG > g > s.i,; the second

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 193

case is impossible because s.i, = g = In, # 31 by the third clause of the
inductive hypothesis. So the second clause of the invariant holds in s’.

For the third clause, if si, # g then s'i, # g unlessa = line31,, in
which case s'.In, = 12, so the third clause holds in s’. If s.i, = g and s.ln, ¢
{18, 22, 25, 28, 31} then s'.In, ¢ {18, 22, 25,28, 31} unless a = line15-17,. In
this case, by Invariant 6, s. POST([s.i,] = s.post[s.i,] = v € s.vs,, sos'.v, =v,
s'.In, = 18 and, by Invariant 16, s’.attempts, = s.attempts, = 0. So the
invariant holds in s'.

Ifsi, = g and s.ln, € {18, 22, 25, 28, 31}, then, by the inductive hypothesis
(third clause), so s.In, ¢ {28,31} and s.v, = v. The only actions we need to
consider are line18-21,, line22-24,, line25-26,, and line18-21, and line28-30,
for some g # p with s.i; = g and s.h; = s HNDOFF[g]. We check for each of
these actions that the third clause of the invariant holds in s'.

For ¢ = line18-21,, we have two cases. If sh, = s HNDOFF[g] then by
Invariant 11, v = s.v, € s.vs,, and by Invariants 1 and 12, s.h,.value # v, so
v ¢ s'.vs,, and the third clause holds in s’. Otherwise, s'.In, = 22 and the third
clause is preserved by a.

For « = line22-24,, by Invariant 17 and the inductive hypothesis,
s.attempts, # 2, and s.attempts, = 1 = s.HNDOFF[g].value = null.
Thus, s'.In, = 25,s'.v, =sv, =v,s.h, =sHNDOFF[g] = s HNDOFF|[g]
and s".attempts, =2 = s"h,.value =null

For a =1ine25-26,, by Invariant 6 and the inductive hypothesis, s.v, =v =
s.post[s.i,] = s. POST[s.i,] and s.attempts, = 2 = s.h;.value = null. Thus,
s'.In, = 18 and the third clause is preserved by a.

For a = line18-21, for some q # p with s.i; = g and s.h, = s HNDOFF[g],
by Invariant 15, s’.attempts, = s.attempts, = 0. Also, s’.v, =s.v, =v and
s'Inp, =s.ln, ¢ {28, 31}.

For a = line28-30, for some q # p with s.i; = g and s.h, = s HNDOFF[g],
we consider three cases. If s.attempts, = 2 then s.h;.value =s.HNDOFF[g].
value = null by the inductive hypothesis, so a preserves the third clause.
If s.attempts, = 1 and s.h;.value € {null,s.v;} then again, a preserves
the third clause. If s.attempts, = 1 and s.h;.value ¢ {(null,s.v,}, then
s'.attempts, = s.attempts, =1and s" HNDOFF[g]value =null. O

We now prove the main theorem, which says that PTB implements ROP
(assuming a well-behaved environment). This proof uses a special case of the
simulation relation, or refinement, method [Lynch and Tuttle 1989].

THEOREM B.5. The PTB automaton (including the environment part) imple-
ments the ROP automaton (including the environment part).

Proor. We can prove that one automaton A implements another automaton
B with the same input and output actions (but different internal actions) by
giving a function [from the states of A to the states of B that satisfies the
following properties:

(1) If s is an initial state of A then f(s) is an initial state of B.

(2) If s is a reachable state of A and s - ' then f(s) > f(s) if a is external
and f(s’) = f(s)if a is internal.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

194 . M. Herlihy et al.

The existence of such a function, called a refinement or a simulation, implies
that A implements B [Lynch and Tuttle 1989].18 Because the state variables of
the ROP automaton (except for numescaping, which is a history variable) are
exactly the environment state variables of the PTB automaton, we simply use
the function that maps states of the PTB automaton to the states of the ROP
automaton with identical values for those state variables. The first property
above is satisfied because the environment state variables are initialized to the
same values in both automata.

Suppose that s is a reachable state of the PTB automaton and s — s. If a is
an internal action, then f(s’) = f(s) because the internal actions do not modify
any of the environment state variables. If a is an environment action, then the
precondition of a is identical in the two automata and the environment state
variables are updated in the same way by both automata, so f(s) = f(s'), as
required.

For the PTB output actions, we need to argue that a is enabled in f(s) and
that both automata update the environment state variables in the same way.
For HireResp, FireResp and LiberateResp actions, the latter is obvious because
the statements of the effects clause that affect the environment state variables
are identical.

For HireResp,(g), s.In, = 6 and s.i, = g, so by Invariant 1, s.pc;,, = hire, and
by Invariant 2,

For FireResp,,0), s.In;, = 8, so by Invariant 1, s.pc, = fire.

For LiberateResp ,(S), s.ln, = 32 and S = s.vs,, so s.pc;, = liberate by Invari-
ant 1, s.status[v] = escaping for all v € s.vs, = S by Invariant 12, and for all g
and v # null such that s.post{g] = v and s.trappinglg], we have v ¢ s.vs, =S
by Invariant 18 (second clause).

For PostResp,() for some p, sin, = 10, so by Invariant 1, s.pc, =
post(s.ip, 5.vp). Thus, PostResp,,() is enabled in f (s), and the environment state
variables are updated in the same way in both automata, so f(s) — f(s), as
required. O

REFERENCES

AcEsEN, O., DETLEFS, D., FLooD, C., GARTHWAITE, A., MARTIN, P., Moir, M., SHavIT, N., AND STEELE, G.
2002. DCAS-based concurrent deques. Theory of Computing Systems 35, 349-386. (A prelimi-
nary version appeared in the Proceedings of the 12th ACM Symposium on Parallel Algorithms
and Architectures, 2000.)

ANDERSON, J. AND MoIr, M. 1997. Using local-spin k-exclusion algorithms to improve wait-free ob-
ject implementations. Distrib. Comput. 11, 1-20. (A preliminary version appeared in Proceedings
of the 13th Annual ACM Symposium on Principles of Distributed Computing, 1994, pp. 141-150.)

ANDERSON, J. AND Moir, M. 1999. Universal constructions for large objects. IEEE Trans. Paral.
Distrib. Syst. 10, 12, 1317-1332. (A preliminary version appeared in the Proceedings of the 9th
Annual International Workshop on Distributed Algorithms, 1995.)

Bacon, D. F., Attanasio, C. R., Leg, H. B., Rajsan, V. T., aND SmiTH, S. 2001. Java without the coffee
breaks: A nonintrusive multiprocessor garbage collector. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation. ACM, New York, 92—
103.

18This is a special case of refinements and simulations, but it is sufficient for our purposes.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Memory Management Support for Data Structures . 195

DETLEFS, D., FLoop, C., GARTHWAITE, A., MARTIN, P., SHAVIT, N., AND STEELE, G. 2000. Even better
DCAS-based concurrent deques. In Proceedings of the 14th International Conference on Dis-
tributed Computing. 59-73.

DETLEFS, D., MARTIN, P., MoOIR, M., AND STEELE, G. 2001. Lock-free reference counting. In Proceed-
ings of the 20th Annual ACM Symposium on Principles of Distributed Computing. ACM, New
York, 190-199.

Dicg, D. AND GARTHWAITE, A. 2002. Mostly lock-free malloc. In Proceedings of the ACM SIGPLAN
International Symposium on Memory Management. ACM, New York.

Dosngrry, S., GrRovEs, L., LucHAaNGco, V., aND Moir, M. 2004a. Formal verification of a practical
lock-free queue algorithm. In Proceedings of the 24th Annual International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE). Lecture Notes in Computer Science,
Vol. 3235, Springer Verlag, New York, 97-114.

Dosgrry, S., HEruHY, M., LucHANGCO, V., AND Moir, M. 2004b. Bringing practical lock-free syn-
chronization to 64-bit applications. In Proceedings of the 23rd Annual ACM Symposium on Prin-
ciples of Distributed Computing. ACM, New York, 31-39.

GREENWALD, M. 1999. Non-blocking synchronization and system design. Ph.D. dissertation, Stan-
ford University Tech. Rep. STAN-CS-TR-99-1624, Palo Alto, Calif.

Harris, T. 2001. A pragmatic implementation of non-blocking linked lists. In Proceedings of the
15th International Symposium on Distributed Computing.

HEerumy, M. 1991. Wait-free synchronization. ACM Trans. Prog. Lang. and Systems 13, 1, 124—
149.

Heruny, M., LucHaNGco, V., MARTIN, P., AND Moir, M. 2002. Brief announcement: Dynamic-sized
lock-free data structures. In Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC 2002). ACM, New York, 131.

Herumy, M., LucHanGgco, V., aND Moir, M. 2003. Space- and time-adaptive nonblocking algo-
rithms. In Proceedings of Computing: The Australasian Theory Symposium (CATS).

Lamport, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput. C-28, 9 (Sept.), 241-248.

Lea, D. 2003. Concurrency jsr-166 interest site. http://gee.cs.oswego.edu/d1l/concurrency-
interest/.

Lynch, N. anp Turtee, M. 1989. An introduction to input/output automata. Tech. Rep. CWI-
Quarterly, 2(3), Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

MARTINEZ, J. F. AND ToRRELLAS, J. 2002. Speculative synchronization: Applying thread-level spec-
ulation to explicitly parallel applications. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems.

MicHAEL, M. 2002a. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the 21st Annual ACM Symposium on the Principles of Distributed
Computing. ACM, New York, 21-30.

MicuaaEL, M. M. 2002b. High performance dynamic lock-free hash tables and list-based sets. In
Proceeding of the 14th Annual Symposium on Parallel Algorithms and Architectures. ACM, New
York, 73-82.

MicHAEL, M. 2004. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans.
Parall. Distrib. Syst. 15, 6 (June), 491-504.

MicuAEL, M. aND Scott, M. 1996. Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In Proceedings of the 15th Annual ACM Symposium on the Principles of
Distributed Computing. ACM, New York, 267-276.

MicHAEL, M. AND Scott, M. 1998. Nonblocking algorithms and preemption-safe locking on mul-
tiprogrammed shared memory multiprocessors. J. Paral. Distrib. Comput. 51, 1, 1-26.

Moir, M. 1997. Practical implementations of non-blocking synchronization primitives. In Pro-
ceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing. ACM, New
York, 219-228.

OPLINGER, J., AND Lam, M. S. 2002. Enhancing software reliability with speculative threads. In
Proceedings of the 10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems.

PrinTEZIS, T. AND DETLEFS, D. 2000. A generational mostly-concurrent garbage collector. In Pro-
ceedings of the 2nd International Symposium on Memory Management. ACM, New York, 143—-154.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

196 . M. Herlihy et al.

Raswar, R. AND GoopmaN, J. R. 2002. Transactional lock-free execution of lock-based programs.
In Proceedings of the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems.
TREIBER, R. 1986. Systems programming: Coping with parallelism. Tech. Rep. RJ5118, IBM

Almaden Research Center.
Vavors, J. 1995. Lock-free linked lists using compare-and-swap. In Proceedings of the 14th An-
nual ACM Symposium on Principles of Distributed Computing. ACM, New York, 214-222. (See

http://www.cs.sunysb.edu/ valois for errata.)
WEAVER, D., AND GERMOND, T. 1994. The SPARC Architecture Manual Version 9. Prentice-Hall,

Englewood Cliffs, N.J.

Received June 2003; revised April 2004 and August 2004; accepted August 2004

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

