
Discrete-event Execution Alternatives on General Purpose Graphical
Processing Units (GPGPUs)

Kalyan S. Perumalla
perumallaks@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Abstract
Graphics cards, traditionally designed as accelerators
for computer graphics, have evolved to support more
general-purpose computation. General Purpose
Graphical Processing Units (GPGPUs) are now being
used as highly efficient, cost-effective platforms for
executing certain simulation applications. While most
of these applications belong to the category of time-
stepped simulations, little is known about the
applicability of GPGPUs to discrete event simulation
(DES). Here, we identify some of the issues &
challenges that the GPGPU stream-based interface
raises for DES, and present some possible approaches
to moving DES to GPGPUs. Initial performance
results on simulation of a diffusion process show that
DES-style execution on GPGPU runs faster than DES
on CPU and also significantly faster than time-stepped
simulations on either CPU or GPGPU.

1. Introduction
Traditionally, graphics cards for workstations and

personal computers have been designed to handle
intensive graphics operations to enable high speed
rendering of complex objects and scenes. More
recently, the graphics cards of the past have been
evolving to support more programmable interfaces for
graphics operations. These interfaces eventually
became sufficiently general to be able to map non-
graphics computation in terms of graphics elements
and achieve non-graphics computation on graphics
processors. Evolution in hardware programmability
together with software development platforms has
transformed graphics cards into General Purpose
Graphical Processing Units (GPGPUs). Their
programmability has reached a point to make them
suitable for more general-purpose computation[1, 2].
Computing that is generally targeted towards execution
on CPUs could now be re-targeted for execution on
GPUs. An application can use a GPGPU as either co-
processor or core processor.

General-purpose computation using GPUs is,

however, a relatively recent area of research. Several
new applications of GPGPUs are being considered, and
new algorithms are being developed that are
demonstrated to be highly efficient for execution on
GPGPUs. Certain applications have been shown to
execute much faster on GPGPUs than on CPUs[2].
Generally speaking, applications that have more
“arithmetic intensity” are more suitable for GPGPUs.
GPUs have also been touted as low-cost alternative
platforms for supercomputing, due to their high peak
execution rates relative to comparable CPUs.

Among simulation applications attempted on
GPGPUs, the majority use time-stepped execution, and
have been shown to execute must faster on the
GPGPUs than on CPUs[3]. This is mainly because
time-stepped approaches tend to map relatively easily
to the streaming paradigm of GPGPUs. However,
little is known with respect to the applicability of
GPGPUs to discrete event simulation (DES). It is
unknown whether DES is relevant, practical and/or
better on GPGPUs relative to CPUs. At the outset, it
seems unclear as to how discrete event models could
be mapped to the streaming model of execution of
GPGPUs. For example, is a traditional event loop
implementation applicable to GPGPUs? Is there a
more suitable alternative DES implementation
approach for GPGPUs? How much faster can
GPGPU-based DES perform compared to an
equivalent CPU-based DES? What types of DES
applications are better suited for execution on
GPGPUs? In this paper, we attempt to address and
answer some of these questions, and highlight areas
where additional research is needed for better
understanding.

In section 2 we provide relevant background
information on GPGPUs. In section 3, we present a
case study in using GPGPUs for simulating a
phenomenon (diffusion process) that has both TS and
DES models, and show that a DES algorithm specially
adapted for the GPGPU can outperform both a
traditional DES algorithm on the CPU as well as time-
stepped algorithms on CPU and GPGPU. Following

the case study, in section 4, we sketch possible
alternative algorithms and data structures for executing
more general DES applications on the GPGPU
platforms. We also outline the challenges and
limitations that GPGPU platforms impose that
constrain the types of DES applications that can be
effectively realized. Finally, we conclude and discuss
future work in section 5.

2. Motivation and Background
A considerable body of literature now exists on

hardware, software and algorithmic details of graphics
processors that are suitable for general purpose
computation. The related literature and bibliography is
now too large to be cited comprehensively here.
Hence, we outline the main GPGPU features that are
relevant in our immediate context of DES applications.
The interested reader is referred to [1, 2, 4, 5] for
literature surveys and detailed background on
GPGPUs, and to some applications such as efficient
line-of-sight calculations for battle-field
simulations[6], and efficient tracking of pheromone
diffusion effects in unmanned vehicle control[7].

2.1. GPGPU Architectures
A highly simplified functional view of a GPGPU is

shown in Figure 1. A set of textures is fed as input to a
bank of “fragment processors”. User-specified code,
called “kernel,” can be loaded into fragment processors
(FPs), which is executed for each and every element of
the input textures. As and when computed values are
generated by the fragment processors, the computed
output is stored at appropriate locations in target
textures. The generated output textures can then be fed
back as input for additional processing, and so on. For
performance reasons, it is desirable to perform as many
operations as possible with the texture memory before
the values in texture memory are transferred to/from
the host CPU’s main memory.

Many other details, such as the vertex processors
and the rasterizer, are not discussed here for simplicity.
The interested reader is referred to [8] for additional
detail on GeForce 6800, which is a good representative
of modern GPGPUs. Current GPGPUs even support
conditional and looping constructs in FPs, as well as a
few registers local to each FP. Parallelism is realized
by processing multiple elements of input textures
concurrently among all available FPs. Asynchronous
memory fetches are supported by FPs, allowing
computation on some elements to proceed even while
other elements are being fetched from texture memory.

The pipelined flow of vertices and fragments
through the graphics pipeline is the main reason why
general purpose computation on GPUs is cast in the

form of stream computation. Streaming applications
map very well to GPGPU architectures, in which the
same operation is applied to all elements in a stream of
data elements (e.g., performing transforms on a stream
of Cartesian positions & vectors).

In comparison to CPUs, the biggest constraint
imposed by GPGPUs is a lack of scatter operations
(i.e., “compute & store instructions” of the form
a[i]=b). This is because the output address of
fragment processor is automatically fixed by the
hardware for each input element. This makes
assignment to arbitrary location of an output texture
difficult. But gather operations (i.e., “load & compute”
instructions of the form b=a[i]) are supported by
GPGPUs in the form of “dependent texture fetch”
operations. Algorithms for achieving scatter in terms
of gather have been proposed[1], but cannot always be
applied without regard to increased runtime overheads.

Figure 1: Highly simplified schematic of

GPGPU operation. Textures are input to a
bank of fragment processors (FPs). FPs

“render” the results of their computation to
target textures.

Another limitation of GPGPUs is the limit on the
maximum size of a texture that can be allocated (e.g.,
4096 x 4096 floating point values per 2-D texture).
Floating point operations are typically single precision,
although very recent GPGPUs are offering support for
double (64-bit) precision.

2.2. GPGPU Programming Environments
Beyond traditional tools for graphics applications,

special programming languages and environments have
been developed for general purpose programming on
GPGPUs. The Cg language[9] from NVIDIA provides
C-like interface to graphics primitives. An optimizing
compiler generates shader routines from Cg program
fragments. Its high-level language interface helps
shield the developer from low-level graphics
programming, but demands some level of expertise
with graphics concepts (e.g., colors, textures, etc).

FP

FP

FP

FP

Texture
Memory

FP=Fragment
Processor

Similar interfaces are supported by the fxc compiler
of DirectX SDK from Microsoft. Higher-level
languages, such as Brook[5], provide more
generalized abstraction of “streams” and stream
programming constructs. The Brook compiler
generates code that maps all abstractions transparently
to graphics primitives, and manages all runtime aspects
automatically.

In the experiments reported here, we coded all
GPGPU simulations in Brook, and we executed using
the DirectX 9 (dx9) runtime. The CPU is an
Intel 2.13GHz Centrino with 2 Gigabytes of memory.
The GPGPU is an NVIDIA GeForce 6800 Go[8] with
256MB memory, and contains 16 fragment processors
and 4 vertex processors. All CPU programs are
compiled with Microsoft Visual C++ v7.

2.3. Parallel Simulation “in the Small”
A significant amount of parallel/distributed discrete

event simulation (PDES) literature has been focused on
traditional CPU-based execution. Parallel processing
on these traditional platforms is enabled by multiple
interconnected CPUs connected either by high-speed
interconnects or by a network. However, the GPGPUs
represent a different type of parallel simulation
platforms that are emerging lately.

A way to consider GPUs is to view them as a means
to perform parallel simulation “in the small”. This is
in contrast to traditional parallel simulation “in the
large” using networks connecting a large numbers of
CPUs. In traditional parallel/distributed simulation
efforts, the simulation problem size is typically scaled
in order to afford enough parallelism commensurate
with the increase in the number CPUs. A modern
GPGPU on the other hand contains a small number
(e.g., 8 or 16) of fragment processors (parallel
processing elements) built into the chip, which can be
exploited for parallel simulation with minimal inter-
processor communication penalty.

In fact, it is the performance/price ratio that is a key
differentiating factor between parallel processors and
GPGPUs. While conventional parallel processors
(e.g., dual or quad-CPU shared-memory machines)
could conceivably deliver performance comparable to
GPGPUs on applications of interest, GPGPUs are
extremely appealing due to their low cost. For
example, the recent GeForce 7 series GPGPU with 24
fragment processors only costs less than $500, which
includes its 256MB video memory. Thus CPU and
GPGPU comparisons are based more on configurations
with similar prices, rather than on those that are
technically equivalent.

Other non-CPU platforms include Field

Programmable Gate Arrays (FPGAs) and network co-
processors. These non-conventional platforms also
afford opportunities for realizing parts of simulation
functionality, such as time synchronization[10], check-
pointing[11] and data distribution[12]. The GPGPU
approaches considered here, however, are intended to
perform an entire simulation, and not just parts of it.

3. DES on GPGPU – Case Study
3.1. Application

We use a diffusion simulation as an application for
a case study in initially exploring the DES
methodology on GPGPUs. Simulation of the diffusion
equation is a well-studied problem, and has many
applications (e.g., heat transfer, dye spreading and gas
diffusion). We chose this application as it easily
affords both time-stepped as well as discrete-event
formulations for its solution[13]. Our simulation uses
the following two-dimensional version of the diffusion
equation:

βαα +
∂
∂+

∂
∂=

∂
∂

2

2

2

2

y
Q

x
Q

t
Q

yx

The space is uniformly and constantly heated from
outside, i.e., the temperature is held constant at the
boundary, with the initial temperature of the interior
being at a value lower than at the boundary. For
discretization of the continuous function, the spatial
dimension is discretized by partitioning the space as a
grid in x and y dimensions. The choice of the method
for temporal discretization is an important one, leading
to different approaches to simulation.

We now outline the traditional time-stepped
algorithm, followed by two other algorithms: discrete
event and hybrid. For each of these algorithms, we
present runtime performance results. The results are
normalized against the runtime of the first algorithm
(traditional time-stepped) running on a CPU. Thus, all
speedup numbers are relative to time-stepped
simulation performance on a CPU.

3.2. Time-Stepped Algorithm
In the time-stepped method of simulation (TS), time

is discretized into a grid with equi-distant points, with
the spacing fixed for all grid elements. Time-stepped
simulation is schematically illustrated in Figure 2. The
horizontal bars represent timelines of each logical
process, while the solid vertical lines represent points
in simulation time at which the logical processes are
updated. The time step value (simulation time period
between successive updates to the state) is determined
by model-specific means to ensure stability along with
sufficient accuracy.

Figure 2: Schematic of timestepped simulation

In the diffusion process simulation, within each
time step, the processing per (i,j) grid element in the 2-
D grid can be performed by one of several known
methods. We chose the following simple explicit
method, where qn+1

i,j is the computed value of qij at
timestep n+1:

βαα +
∆

+−
+

∆
+−

+=

+−+−

+

2
,1,,1

2
1,,1,

,
1

,

22
y

qqq
x

qqq

qq
n

ji
n

ji
n

ji
y

n
ji

n
ji

n
ji

x

n
ji

n
ji

The time-stepped algorithm for the diffusion grid is
shown in Figure 3. Previous research on GPGPUs has,
by and large, implemented simulations using such a
time-stepped approach on GPGPUs, and compared
their performance against that on CPUs[5]. We
implemented this algorithm both on a CPU and on a
GPGPU. The runtime performance of time-stepped
algorithm is shown in Figure 4. Consistent with the
level of speedups published in the literature, our
implementation of the diffusion process simulation
reflects more than 4-fold speed up of GPGPU over
CPU, as shown in Figure 4.

1. While not end of simulation
 /*Advance current simulation time*/
1.1 tnow += timestep
 /*Advance all grid elements to current time*/
1.2 For all (i,j): Qij += Qdotij * timestep

Figure 3: Time-stepped algorithm

It is known from the GPGPU literature that, in
general, when an application’s working set fits mostly
within the cache of CPU, the application executes
sufficiently fast to exceed the speed of an equivalent
version of the application on a GPGPU. This
phenomenon is indeed reflected in the speedup on
smaller problem sizes of the diffusion application,
which are sufficiently small to fit well within the L2
cache size of 1MB. In problems with grid sizes 50x50
and 100x100, the GPGPU version experiences
slowdown relative to the CPU-based time-stepped
approach. When the working set of the problem no
longer fits in the L2 cache, however, there is
significant benefit to using the GPGPU. The fragment
processors are kept busy on the GPGPU via
asynchronous memory operations, resulting in over 4-

fold speedup.
While the relative performance improvement of

time-stepped algorithms is as expected, a logical
question arises, namely, how GPGPU and CPU
performance compares on discrete event algorithms.
DES in general entails fewer, infrequent updates to the
logical processes and hence performance can be
expected on the CPU to equal the speed improvements
afforded by GPGPU. We will now consider an
equivalent discrete event formulation of the problem,
and compare its performance on a CPU against the fast
time-stepped performance of GPGPU.

0

1

2

3

4

5

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

Figure 4: Speedup of GPU-based time-stepped

algorithm relative to that on CPU

3.3. Discrete-Event Algorithm
In discrete event formulation, time is discretized on

an individual basis for each grid element,
independently and dynamically during the simulation.
The discrete event formulation for the diffusion
problem has been studied (see, for example, [13]). A
schematic of updates is shown in Figure 5, and the
pseudo code for the DES algorithm is shown in Figure
6. We used the ADEVS package[13] for a CPU-based
implementation of the DES formulation.

Figure 5: Schematic of DES execution

The main idea is that each grid element i,j computes
the next latest time at which its state needs to be
updated without violating a discretization of the effect
of its own state value (qi,j) on its neighboring elements.

In this CPU-based formulation, each element
schedules an event to itself for its next update time. If
nothing changes before the time at which the update
occurs, the state gets advanced correctly. Otherwise, if
the value of any of its neighboring elements changes
“significantly”, the update time of this element is
recomputed and the self event is rescheduled
accordingly. The correction and rescheduling of the
update event of an element is accomplished by
updating the event in the future/pending event list.

1. For all (i,j)
1.1 Qlastij = Qij
1.2 dtij = compute_dt(Q,i,j)
1.3 EventList.Insert(i,j,dtij)
2. While not end of simulation
 /*Find grid element with earliest timestamp*/
2.1 (imin, jmin, dtmin) = EventList.PeekTop()
 /*Advance all neighbor elements to current time*/
2.2 For all neighbors & itself (x,y) of (imin,jmin)
2.2.1 Qxy += Qdotxy * dtmin
 /*"Move" the grid element to its phase point*/
2.3 Qlastimin,jmin = Qimin,jmin
 /*Reschedule events of updated elements*/
2.4 For all neighbors & itself (x,y) of (imin,jmin)
2.4.1 dtxy = compute_dt(Q,x,y)
2.4.2 EventList.Adjust(x,y,dtxy)

Figure 6: Discrete event algorithm

Clearly, the CPU-based DES algorithm (CPU-DES)
outperforms the fast GPGPU-based time-stepped
algorithm (GPU-TS), as shown in Figure 7. While
GPU-TS is over 4 times faster than CPU-TS, CPU-
DES is over 8 times faster than CPU-TS (for the
750x750 grid scenario). The natural question that
follows is whether there exists an algorithm analogous
to CPU-DES that can make the GPGPU perform better
than GPU-TS and CPU-DES. The main challenge in
addressing this question is the fact that the DES
algorithm cannot be ported to the GPGPU architecture.
As we discuss in more detail in section 4, selective
individual updates to grid elements are not possible in
the GPGPU’s streaming paradigm. The challenge then
is to find a suitable variant of the DES approach that is
better suited and realizable on a GPGPU. We describe
one such algorithm next.

3.4. Hybrid Algorithm
The key difference between the (CPU-based) DES

algorithm and the traditional time-stepped algorithm is
that time advances are permitted to be variable in
length at runtime. On a CPU, it is possible to
selectively vary this length on an individual element-
by-element basis. An equivalent operation on a
GPGPU would be to find the minimum timestamp
among the next update times of all elements, and

advance that particular element to its update time.
However, it then becomes difficult to thereafter
selectively modify the update times of that element’s
neighbors.

0

1

2

3

4

5

6

7

8

9

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

Figure 7: Speedup of CPU-based DES

algorithm relative to CPU-based TS algorithm

To accomplish this, it becomes necessary to update
all elements of the grid, not just the neighbors, since it
is necessary to stream all the grid elements anyway,
even if one wanted to only update the neighbors alone.
Reasoning this way, a “hybrid” algorithm emerges
naturally that combines the time-stepped nature of
synchronous updates to all elements with the variable
timestep support of DES. This is realized in the hybrid
algorithm shown in Figure 8, which is surprisingly
simple. Each individual element computes its next
“safe” update timestamp in step 1.2. The minimum
among all update times is chosen as the next timestep,
and a synchronous update of state is performed across
all elements in step 1.5. While the variability of
minimum timestep mimics the DES nature of dynamic
updates, the synchronous updates mimic the collective
nature of state updates of the time-stepped method,
thus giving the hybrid scheme. The schematic diagram
corresponding to the hybrid algorithm is shown Figure
9. The schematic shows that global synchronous
updates are performed at every discrete event point.
Note that multiple discrete event points become
merged into a single update step during synchronous
updates (which turns out to be a key benefit with
GPGPU).
Advantages: While the hybrid is surprisingly simple, it
provides some non-intuitive advantages when executed
on a GPGPU. First, a synchronous update can result in
faster time advances globally, leading to faster
evolution of state as compared to time-stepped method.

1. While not end of simulation
 /*Find next update times for all elements*/
1.2 For all (i,j): dtij = compute_dt(Q,i,j)
 /*Find minimum among all update times*/
1.3 dtmin = min(dtij) of all (i,j)
 /*Advance current simulation time*/
1.4 tnow += dtmin
 /*Advance all grid elements to current time*/
1.5 For all (i,j): Qij += Qdotij * dtmin

Figure 8: Hybrid algorithm

Secondly, simultaneous events are processed in
parallel on the fragment processors of GPGPU. In a
CPU-DES, simultaneous events are processed one at a
time (i.e., grid elements that have the same update time
are sequentially processed), where as such simultaneity
is naturally processed in a single step (1.5) in the
synchronous update in the hybrid algorithm. This
effect is pronounced when many grid elements have
the same value for their next update timestamps (which
is often possible in initial stages of diffusion with large
grid sizes). Thirdly, computing the minimum update
time is logarithmic in time complexity on the GPGPU
due to the availability of hierarchical reduction
algorithms on streams[2]. This makes the overhead for
computation of the minimum timestep to be
comparable to that of event list management on a CPU.

Figure 9: Schematic of hybrid simulation

Note that this algorithm differs from synchronous
event processing algorithms such as described in [14].
The operation of the hybrid algorithm is somewhat
akin to that of variable timestep algorithms, but differs
from them in the fact that all elements are processed in
parallel at each timestep, unlike on a single CPU.
Moreover, the hybrid algorithm is akin to variable
timestep algorithms only operationally, but retains the
unique capability of advancing each element
independently. In fact, the synchronous global update
is a “free” operation for each local update, because of
the stream processing nature of GPGPUs. Also,
repeatability is not affected by parallel processing
because the write operations on the input do not take
affect (i.e., input is not affected by output) until all
writes are completed.

The runtime performances of hybrid algorithm on a
GPGPU (GPU-Hybrid) and on a CPU (CPU-Hybrid)

are shown in Figure 10. The 16-fold speedup of GPU-
Hybrid over CPU-TS makes it the fastest among all
variants. In particular, it is more than twice as fast as
the optimized CPU-DES approach which is the fastest
sequential implementation on a CPU. The reason is
that GPU-Hybrid not only reaps the advantages of
leaps in time due to DES-style operation, but also
benefits from fast parallel (stream) processing within
each synchronous update. That parallel processing on
the GPGPU (by fragment processors) contributes
significantly to this speedup is reinforced by the low
speedup of the same algorithm on a CPU (CPU-
Hybrid).

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

CPU-Hybrid GPU-Hybrid

Figure 10: Speedup of CPU- & GPU-based
hybrid algorithms relative to CPU-based time-

stepped algorithm

3.5. Additional Discussion on Performance
It is clear that the CPU-based simulations are faster

than GPGPU-based simulations for smaller problems
sizes, presumably due to their containment in the
CPU’s L2 cache. This is in line with the well-known
rule of thumb that the Intel Pentium 4 processor
operating mostly off its L2 cache outperforms an ATI
or NVIDIA GPU despite the GPGPU’s concurrent
processing and asynchronous memory operations.
This explains the slow down (speed up less than 1.0)
for 50x50 and 100x100 sized grids.

The real benefit of GPUs’ streaming architecture in
fact becomes truly evident on larger problem sizes that
exceed the L2 cache size of the CPU (e.g., 500 x 500 x
8 bytes/variable x 3 variables = 6MB, which is more
than the 2MB L2 cache of the Intel processor we used).
In these scenarios, the GPGPU starts posting gains
over CPU, and delivers performance almost equal to or
greater than an optimized DES version executing on a

CPU. Brook documentation states that a kernel
function can have any number of output streams.
However, we found that the runtime is buggy when
more than one output is generated by a kernel function.
One reason for this discrepancy could be due to the
fact that we used a NVIDIA GeForce 6800 Go, which
is a portable version of the Brook-tested GeForce
6800 Ultra. Our implementation in Brook hence was
constrained by a single output stream, and could be
optimized to potentially run faster if multiple output
streams were employed.

4. Generalized DES on GPGPU
We now turn our attention to extending these

approaches to a more generalized set of DES
applications. The GPGPU computation paradigm
presents significant challenges to realizing the
traditional DES application programming interface in
full generality. We describe the typical event/LP
model in traditional DES/PDES, and then discuss how
such an interface relates to the GPGPU platform
constraints. Here we focus on an event-oriented view
[14] of DES. Process-oriented views are considerably
more complex to implement on the GPGPU (due to
lack of stack context support) and not considered here.

In traditional (event-oriented) DES, events are
processed in time stamp order. In general, the
simulation state is organized into multiple logical
processes (LPs). Time-stamped events are sent from
one (source) LP to another (destination) LP. During
processing of an event, more new events could be
generated by the source LP to any subset of LPs
(including the source LP itself). The processed event
is then noted as “consumed”, which removes the event
from the event list and makes its memory eligible for
reuse. As part of event processing, the LP’s state
memory is modified. Unfortunately, this classical style
of event processing simply does not carry forward to
GPGPU platforms for the following reasons:
1. Since processing cannot be performed on events (or

LPs) one at a time in von Neumann style, traditional
event processing simulation loop does not apply to
GPGPUs. Consequently, isolated, individual
processing of events is extremely inefficient on
GPGPU’s streaming architecture.

2. The notion of sending events from one LP to another
is straightforward to implement on the CPU.
Conceptually if an event E is to be sent by LP i to
LP j, it is realized as an assignment similar to:
Event[i][j]=E. However, this is not easily
implemented on a GPGPU either, because of lack of
scatter operations as discussed in Section 2.1.

3. Also, the possibility of one event generating multiple

events is relatively difficult to realize in the
streaming paradigm of GPGPUs, due to significant
performance overhead incurred by dynamic
variability of stream sizes.
On the other hand, a GPGPU does help perform

parallel processing of simultaneous events naturally.
As we saw, the hybrid algorithm shown in Figure 8
naturally captures the availability of all simultaneous
events and opens them up for parallel processing on the
fragment processors of the GPGPU. The GeForce
6800, for example, has 16 fragment processors, which
opens up 16-fold parallelism for processing
simultaneous events. A CPU on the other hand
processes simultaneous events sequentially, one at a
time. Overall, it appears as though existing DES (and
PDES) conceptual frameworks need to be rethought
from scratch. The key to realizing DES on GPUs is to
cast traditional events and LPs into a stream processing
paradigm supported by GPGPUs.

4.1. GPGPU Usage Alternatives in DES
GPGPUs can be put to use in DES in more than one

way. For example, one could use GPGPUs with a
traditional CPU-based event scheduler as usual for
DES. In this scheme, any intensive computation that is
present in intra-event processing can be delegated to be
performed on the GPGPU. The GPGPU is essentially
used as a co-processor during each individual event
processing. Somewhat similar to the line-of-sight
calculations used in [6], this style of DES is
particularly suitable for medium- to coarse-grained
events that entail heavy arithmetic processing (such as
linear algebra or transcendental function
computations). Also, this approach is relatively easy to
adapt an existing application to use GPGPU.

A more challenging approach is to use the GPGPU
as a core processor rather than as a co-processor. In
this “all-GPU approach,” the entire DES event
processing is performed on the GPGPU, with little
mediation from the CPU. The GPU-Hybrid algorithm
in Figure 8 is an example of this type of approach. In
general, two streaming alternatives can be envisioned:
1) “Stream of events”, in which the event list is stored

as a stream of events, and the entire event stream is
fed as input to an event processing kernel on the
GPGPU. The kernel processes only those events in
the input event stream whose timestamps are less
than safe/allowed time, and leaves the others
marked unprocessed.

2) “Stream of LPs”, in which all the logical-processes
are stored as a single stream, and fed through an LP-
processing kernel, which processes all events of
each LP that are eligible for processing. This kernel

processes only those LPs who have events whose
event time is less than safe/allowed time.
Although event stream and LP stream schemes

appear to be two distinct possibilities, they are in fact
necessitated by the GPGPU’s streaming and gathering
architecture (and lack of scatter) to be one and the
same approach. This is because, in order to process an
event, the event’s LP state must be updated as well.
Also, in order to send/receive events, the source and/or
destination LP state should be available at the time of
an event processing. Thus, the only data structure that
seems feasible is one in which an LP has a fixed
number of events that it has sent to other LPs. This
data structure allows events and LP state to be co-
located, allowing them to be read and written in the
event processing kernel. The resulting output stream
will be an updated LP stream for use in the next
iteration of simulation.

5. Conclusions and Future Work
GPGPUs offer a unique set of computational

features that should prove useful for efficient execution
of DES applications. Also, their mass market enables
cost advantages via economies of mass manufacture.
GPGPUs thus represent highly promising platforms for
efficient (and cost-effective) execution of DES
applications, but significant new research is needed to
redesign traditional DES/PDES approaches into new
stream-based paradigms for GPGPU platforms.

While time-stepped approaches have been studied
in simulations using GPGPUs, to the best of our
knowledge, this is the first work to explore DES using
GPGPUs, and to properly compare the best sequential
(DES-based) simulation on the CPU against a
comparable technique on GPGPU. The results
demonstrate the benefits of GPGPUs, showing two-
fold improvement of GPGPU-based DES
implementation over a traditional CPU-based DES
execution. Discretization is thus helpful to speed up
the simulation relative to time-stepped simulation.
However, for more general DES applications, the
traditional discrete event simulation loop seems
inapplicable to GPGPU’s stream processing style of
computation, and hence a hybrid (discrete plus time-
stepped) approach seems more appropriate. The
performance results reflect this relative ordering of
approach.

Additional research is needed to optimize DES
variants on GPGPUs, both in terms of algorithms as
well as optimized system implementations. For
example, uncovering additional parallelism via
lookahead across fragment processors could be
explored. Similarly, optimized implementations
directly over lower-level frameworks such as Cg

language (as opposed to using Brook) can help
achieve much higher performance for tuned DES
applications. Simulations with greater arithmetic
intensity are to be explored for even better suitability to
the GPGPU platforms. We are also exploring the
performance of physics models such as particle-in-cell
models in this light.

References
[1] M. Pharr and R. Fernando, GPU Gems 2: Programming

Techniques for High-Performance Graphics and
General-Purpose Computation: Addison Wesley
Professional, 2005.

[2] J. D. Owens, et al., "A Survey of General-Purpose
Computation on Graphics Hardware," Eurographics,
2005.

[3] S. Tomov, et al., "Benchmarking and Implementation of
Probability-based Simulations on Programmable
Graphics Cards," Computers and Graphics, vol. 29(1),
pp., 2005.

[4] General Purpose Computation Using Graphics Hardware,
http://www.gpgpu.org.

[5] I. Buck, et al., "Brook for GPUs: Stream Computing on
Graphics Hardware," ACM Transactions on Graphics,
vol. 23(3), pp. 777-786, 2004.

[6] M. Verdesca, et al., "Using Graphics Processor Units to
Accelerate OneSAF: A Case Study in Technology
Transition," Interservice/Industry Training, Simulation
and Education Conference (IITSEC), 2005.

[7] B. Walter, et al., "UAV Swarm Control: Calculating
Digital Phermone Fields with the GPU,"
Interservice/Industry Training, Simulation and Education
Conference (IITSEC), 2005.

[8] J. Montrym and H. Moreton, "The GeForce 6800," IEEE
Micro, vol. 25(2), pp. 41-51, 2005.

[9] R. Fernando and M. J. Kilgard, The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics,
1 ed: Addison Wesley Professional, 2003.

[10] M. Rosu, et al., "Supporting Parallel Applications on
Clusters of Workstations: The Intelligent Network
Interface Approach," IEEE Symposium on High
Performance Distributed Computing, 1997.

[11] F. Quaglia and A. Santoro, "Non-blocking
Checkpointing for Optimistic Parallel Simulation," IEEE
Transactions on Parallel and Distributed Systems, vol.
14(6), pp. 593-610, 2003.

[12] A. Santoro and R. M. Fujimoto, "Off-Loading Data
Distribution Management to Network Processors in
HLA-Based Distributed Simulations," Distributed
Simulations and Real-Time Applications, 2004.

[13] J. Nutaro, "Parallel Discrete Event Simulation with
Application to Continuous Systems," thesis, University
of Arizona, 2003.

[14] R. M. Fujimoto, Parallel and Distributed Simulation
Systems: Wiley Interscience, 2000.

