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Abstract 
Graphics cards, traditionally designed as accelerators 
for computer graphics, have evolved to support more 
general-purpose computation.  General Purpose 
Graphical Processing Units (GPGPUs) are now being 
used as highly efficient, cost-effective platforms for 
executing certain simulation applications.  While most 
of these applications belong to the category of time-
stepped simulations, little is known about the 
applicability of GPGPUs to discrete event simulation 
(DES). Here, we identify some of the issues & 
challenges that the GPGPU stream-based interface 
raises for DES, and present some possible approaches 
to moving DES to GPGPUs.  Initial performance 
results on simulation of a diffusion process show that 
DES-style execution on GPGPU runs faster than DES 
on CPU and also significantly faster than time-stepped 
simulations on either CPU or GPGPU. 

1. Introduction 
Traditionally, graphics cards for workstations and 

personal computers have been designed to handle 
intensive graphics operations to enable high speed 
rendering of complex objects and scenes.  More 
recently, the graphics cards of the past have been 
evolving to support more programmable interfaces for 
graphics operations.  These interfaces eventually 
became sufficiently general to be able to map non-
graphics computation in terms of graphics elements 
and achieve non-graphics computation on graphics 
processors.  Evolution in hardware programmability 
together with software development platforms has 
transformed graphics cards into General Purpose 
Graphical Processing Units (GPGPUs).  Their 
programmability has reached a point to make them 
suitable for more general-purpose computation[1, 2].  
Computing that is generally targeted towards execution 
on CPUs could now be re-targeted for execution on 
GPUs.  An application can use a GPGPU as either co-
processor or core processor. 

General-purpose computation using GPUs is, 

however, a relatively recent area of research.  Several 
new applications of GPGPUs are being considered, and 
new algorithms are being developed that are 
demonstrated to be highly efficient for execution on 
GPGPUs.  Certain applications have been shown to 
execute much faster on GPGPUs than on CPUs[2].  
Generally speaking, applications that have more 
“arithmetic intensity” are more suitable for GPGPUs.  
GPUs have also been touted as low-cost alternative 
platforms for supercomputing, due to their high peak 
execution rates relative to comparable CPUs. 

Among simulation applications attempted on 
GPGPUs, the majority use time-stepped execution, and 
have been shown to execute must faster on the 
GPGPUs than on CPUs[3].  This is mainly because 
time-stepped approaches tend to map relatively easily 
to the streaming paradigm of GPGPUs.  However, 
little is known with respect to the applicability of 
GPGPUs to discrete event simulation (DES).  It is 
unknown whether DES is relevant, practical and/or 
better on GPGPUs relative to CPUs.  At the outset, it 
seems unclear as to how discrete event models could 
be mapped to the streaming model of execution of 
GPGPUs.  For example, is a traditional event loop 
implementation applicable to GPGPUs?  Is there a 
more suitable alternative DES implementation 
approach for GPGPUs?  How much faster can 
GPGPU-based DES perform compared to an 
equivalent CPU-based DES?  What types of DES 
applications are better suited for execution on 
GPGPUs?  In this paper, we attempt to address and 
answer some of these questions, and highlight areas 
where additional research is needed for better 
understanding. 

In section 2 we provide relevant background 
information on GPGPUs.  In section 3, we present a 
case study in using GPGPUs for simulating a 
phenomenon (diffusion process) that has both TS and 
DES models, and show that a DES algorithm specially 
adapted for the GPGPU can outperform both a 
traditional DES algorithm on the CPU as well as time-
stepped algorithms on CPU and GPGPU.  Following 



the case study, in section 4, we sketch possible 
alternative algorithms and data structures for executing 
more general DES applications on the GPGPU 
platforms.  We also outline the challenges and 
limitations that GPGPU platforms impose that 
constrain the types of DES applications that can be 
effectively realized.  Finally, we conclude and discuss 
future work in section 5. 

2. Motivation and Background 
A considerable body of literature now exists on 

hardware, software and algorithmic details of graphics 
processors that are suitable for general purpose 
computation.  The related literature and bibliography is 
now too large to be cited comprehensively here.  
Hence, we outline the main GPGPU features that are 
relevant in our immediate context of DES applications.  
The interested reader is referred to [1, 2, 4, 5] for 
literature surveys and detailed background on 
GPGPUs, and to some applications such as efficient 
line-of-sight calculations for battle-field 
simulations[6], and efficient tracking of pheromone 
diffusion effects in unmanned vehicle control[7]. 

2.1. GPGPU Architectures 
A highly simplified functional view of a GPGPU is 

shown in Figure 1.  A set of textures is fed as input to a 
bank of “fragment processors”.  User-specified code, 
called “kernel,” can be loaded into fragment processors 
(FPs), which is executed for each and every element of 
the input textures.  As and when computed values are 
generated by the fragment processors, the computed 
output is stored at appropriate locations in target 
textures.  The generated output textures can then be fed 
back as input for additional processing, and so on.  For 
performance reasons, it is desirable to perform as many 
operations as possible with the texture memory before 
the values in texture memory are transferred to/from 
the host CPU’s main memory. 

Many other details, such as the vertex processors 
and the rasterizer, are not discussed here for simplicity.  
The interested reader is referred to [8] for additional 
detail on GeForce 6800, which is a good representative 
of modern GPGPUs.  Current GPGPUs even support 
conditional and looping constructs in FPs, as well as a 
few registers local to each FP.  Parallelism is realized 
by processing multiple elements of input textures 
concurrently among all available FPs.  Asynchronous 
memory fetches are supported by FPs, allowing 
computation on some elements to proceed even while 
other elements are being fetched from texture memory. 

The pipelined flow of vertices and fragments 
through the graphics pipeline is the main reason why 
general purpose computation on GPUs is cast in the 

form of stream computation.  Streaming applications 
map very well to GPGPU architectures, in which the 
same operation is applied to all elements in a stream of 
data elements (e.g., performing transforms on a stream 
of Cartesian positions & vectors). 

In comparison to CPUs, the biggest constraint 
imposed by GPGPUs is a lack of scatter operations 
(i.e., “compute & store instructions” of the form 
a[i]=b).  This is because the output address of 
fragment processor is automatically fixed by the 
hardware for each input element.  This makes 
assignment to arbitrary location of an output texture 
difficult.  But gather operations (i.e., “load & compute” 
instructions of the form b=a[i]) are supported by 
GPGPUs in the form of “dependent texture fetch” 
operations.  Algorithms for achieving scatter in terms 
of gather have been proposed[1], but cannot always be 
applied without regard to increased runtime overheads. 

 
Figure 1: Highly simplified schematic of 

GPGPU operation.  Textures are input to a 
bank of fragment processors (FPs).  FPs 

“render” the results of their computation to 
target textures. 

Another limitation of GPGPUs is the limit on the 
maximum size of a texture that can be allocated (e.g., 
4096 x 4096 floating point values per 2-D texture).  
Floating point operations are typically single precision, 
although very recent GPGPUs are offering support for 
double (64-bit) precision.  

2.2. GPGPU Programming Environments 
Beyond traditional tools for graphics applications, 

special programming languages and environments have 
been developed for general purpose programming on 
GPGPUs.  The Cg language[9] from NVIDIA provides 
C-like interface to graphics primitives.  An optimizing 
compiler generates shader routines from Cg program 
fragments.  Its high-level language interface helps 
shield the developer from low-level graphics 
programming, but demands some level of expertise 
with graphics concepts (e.g., colors, textures, etc).  
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Similar interfaces are supported by the fxc compiler 
of DirectX SDK from Microsoft.  Higher-level 
languages, such as Brook[5], provide more 
generalized abstraction of “streams” and stream 
programming constructs.  The Brook compiler 
generates code that maps all abstractions transparently 
to graphics primitives, and manages all runtime aspects 
automatically. 

In the experiments reported here, we coded all 
GPGPU simulations in Brook, and we executed using 
the DirectX 9 (dx9) runtime.  The CPU is an 
Intel 2.13GHz Centrino with 2 Gigabytes of memory.  
The GPGPU is an NVIDIA GeForce 6800 Go[8] with 
256MB memory, and contains 16 fragment processors 
and 4 vertex processors.  All CPU programs are 
compiled with Microsoft Visual C++ v7. 

2.3. Parallel Simulation “in the Small” 
A significant amount of parallel/distributed discrete 

event simulation (PDES) literature has been focused on 
traditional CPU-based execution.  Parallel processing 
on these traditional platforms is enabled by multiple 
interconnected CPUs connected either by high-speed 
interconnects or by a network.  However, the GPGPUs 
represent a different type of parallel simulation 
platforms that are emerging lately. 

A way to consider GPUs is to view them as a means 
to perform parallel simulation “in the small”.  This is 
in contrast to traditional parallel simulation “in the 
large” using networks connecting a large numbers of 
CPUs.  In traditional parallel/distributed simulation 
efforts, the simulation problem size is typically scaled 
in order to afford enough parallelism commensurate 
with the increase in the number CPUs.  A modern 
GPGPU on the other hand contains a small number 
(e.g., 8 or 16) of fragment processors (parallel 
processing elements) built into the chip, which can be 
exploited for parallel simulation with minimal inter-
processor communication penalty. 

In fact, it is the performance/price ratio that is a key 
differentiating factor between parallel processors and 
GPGPUs.  While conventional parallel processors 
(e.g., dual or quad-CPU shared-memory machines) 
could conceivably deliver performance comparable to 
GPGPUs on applications of interest, GPGPUs are 
extremely appealing due to their low cost.  For 
example, the recent GeForce 7 series GPGPU with 24 
fragment processors only costs less than $500, which 
includes its 256MB video memory.  Thus CPU and 
GPGPU comparisons are based more on configurations 
with similar prices, rather than on those that are 
technically equivalent. 

Other non-CPU platforms include Field 

Programmable Gate Arrays (FPGAs) and network co-
processors.  These non-conventional platforms also 
afford opportunities for realizing parts of simulation 
functionality, such as time synchronization[10], check-
pointing[11] and data distribution[12].  The GPGPU 
approaches considered here, however, are intended to 
perform an entire simulation, and not just parts of it. 

3. DES on GPGPU – Case Study 
3.1. Application 

We use a diffusion simulation as an application for 
a case study in initially exploring the DES 
methodology on GPGPUs.  Simulation of the diffusion 
equation is a well-studied problem, and has many 
applications (e.g., heat transfer, dye spreading and gas 
diffusion).  We chose this application as it easily 
affords both time-stepped as well as discrete-event 
formulations for its solution[13].  Our simulation uses 
the following two-dimensional version of the diffusion 
equation: 
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The space is uniformly and constantly heated from 
outside, i.e., the temperature is held constant at the 
boundary, with the initial temperature of the interior 
being at a value lower than at the boundary.  For 
discretization of the continuous function, the spatial 
dimension is discretized by partitioning the space as a 
grid in x and y dimensions.  The choice of the method 
for temporal discretization is an important one, leading 
to different approaches to simulation. 

We now outline the traditional time-stepped 
algorithm, followed by two other algorithms: discrete 
event and hybrid.  For each of these algorithms, we 
present runtime performance results.  The results are 
normalized against the runtime of the first algorithm 
(traditional time-stepped) running on a CPU.  Thus, all 
speedup numbers are relative to time-stepped 
simulation performance on a CPU. 

3.2. Time-Stepped Algorithm 
In the time-stepped method of simulation (TS), time 

is discretized into a grid with equi-distant points, with 
the spacing fixed for all grid elements.  Time-stepped 
simulation is schematically illustrated in Figure 2.  The 
horizontal bars represent timelines of each logical 
process, while the solid vertical lines represent points 
in simulation time at which the logical processes are 
updated.  The time step value (simulation time period 
between successive updates to the state) is determined 
by model-specific means to ensure stability along with 
sufficient accuracy.  



 
Figure 2: Schematic of timestepped simulation 

In the diffusion process simulation, within each 
time step, the processing per (i,j) grid element in the 2-
D grid can be performed by one of several known 
methods.  We chose the following simple explicit 
method, where qn+1

i,j is the computed value of qij at 
timestep n+1: 
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The time-stepped algorithm for the diffusion grid is 
shown in Figure 3.  Previous research on GPGPUs has, 
by and large, implemented simulations using such a 
time-stepped approach on GPGPUs, and compared 
their performance against that on CPUs[5].  We 
implemented this algorithm both on a CPU and on a 
GPGPU.  The runtime performance of time-stepped 
algorithm is shown in Figure 4.  Consistent with the 
level of speedups published in the literature, our 
implementation of the diffusion process simulation 
reflects more than 4-fold speed up of GPGPU over 
CPU, as shown in Figure 4. 

1. While not end of simulation 
 /*Advance current simulation time*/ 
1.1 tnow += timestep 
 /*Advance all grid elements to current time*/ 
1.2 For all (i,j): Qij += Qdotij * timestep 

Figure 3: Time-stepped algorithm 

It is known from the GPGPU literature that, in 
general, when an application’s working set fits mostly 
within the cache of CPU, the application executes 
sufficiently fast to exceed the speed of an equivalent 
version of the application on a GPGPU.  This 
phenomenon is indeed reflected in the speedup on 
smaller problem sizes of the diffusion application, 
which are sufficiently small to fit well within the L2 
cache size of 1MB.  In problems with grid sizes 50x50 
and 100x100, the GPGPU version experiences 
slowdown relative to the CPU-based time-stepped 
approach.  When the working set of the problem no 
longer fits in the L2 cache, however, there is 
significant benefit to using the GPGPU.  The fragment 
processors are kept busy on the GPGPU via 
asynchronous memory operations, resulting in over 4-

fold speedup. 
While the relative performance improvement of 

time-stepped algorithms is as expected, a logical 
question arises, namely, how GPGPU and CPU 
performance compares on discrete event algorithms.  
DES in general entails fewer, infrequent updates to the 
logical processes and hence performance can be 
expected on the CPU to equal the speed improvements 
afforded by GPGPU.  We will now consider an 
equivalent discrete event formulation of the problem, 
and compare its performance on a CPU against the fast 
time-stepped performance of GPGPU. 
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Figure 4: Speedup of GPU-based time-stepped 

algorithm relative to that on CPU 

3.3. Discrete-Event Algorithm 
In discrete event formulation, time is discretized on 

an individual basis for each grid element, 
independently and dynamically during the simulation. 
The discrete event formulation for the diffusion 
problem has been studied (see, for example, [13]).  A 
schematic of updates is shown in Figure 5, and the 
pseudo code for the DES algorithm is shown in Figure 
6.  We used the ADEVS package[13] for a CPU-based 
implementation of the DES formulation. 

 
Figure 5: Schematic of DES execution 

The main idea is that each grid element i,j computes 
the next latest time at which its state needs to be 
updated without violating a discretization of the effect 
of its own state value (qi,j) on its neighboring elements. 



In this CPU-based formulation, each element 
schedules an event to itself for its next update time.  If 
nothing changes before the time at which the update 
occurs, the state gets advanced correctly.  Otherwise, if 
the value of any of its neighboring elements changes 
“significantly”, the update time of this element is 
recomputed and the self event is rescheduled 
accordingly.  The correction and rescheduling of the 
update event of an element is accomplished by 
updating the event in the future/pending event list. 

1. For all (i,j) 
1.1 Qlastij = Qij 
1.2 dtij = compute_dt(Q,i,j) 
1.3 EventList.Insert(i,j,dtij) 
2. While not end of simulation 
 /*Find grid element with earliest timestamp*/ 
2.1 (imin, jmin, dtmin) = EventList.PeekTop() 
 /*Advance all neighbor elements to current time*/ 
2.2 For all neighbors & itself (x,y) of (imin,jmin) 
2.2.1  Qxy += Qdotxy * dtmin 
 /*"Move" the grid element to its phase point*/ 
2.3 Qlastimin,jmin = Qimin,jmin 
 /*Reschedule events of updated elements*/ 
2.4 For all neighbors & itself (x,y) of (imin,jmin) 
2.4.1  dtxy = compute_dt(Q,x,y) 
2.4.2  EventList.Adjust(x,y,dtxy) 

Figure 6: Discrete event algorithm 

Clearly, the CPU-based DES algorithm (CPU-DES) 
outperforms the fast GPGPU-based time-stepped 
algorithm (GPU-TS), as shown in Figure 7.  While 
GPU-TS is over 4 times faster than CPU-TS, CPU-
DES is over 8 times faster than CPU-TS (for the 
750x750 grid scenario).  The natural question that 
follows is whether there exists an algorithm analogous 
to CPU-DES that can make the GPGPU perform better 
than GPU-TS and CPU-DES.  The main challenge in 
addressing this question is the fact that the DES 
algorithm cannot be ported to the GPGPU architecture.  
As we discuss in more detail in section 4, selective 
individual updates to grid elements are not possible in 
the GPGPU’s streaming paradigm.  The challenge then 
is to find a suitable variant of the DES approach that is 
better suited and realizable on a GPGPU.  We describe 
one such algorithm next. 

3.4. Hybrid Algorithm 
The key difference between the (CPU-based) DES 

algorithm and the traditional time-stepped algorithm is 
that time advances are permitted to be variable in 
length at runtime.  On a CPU, it is possible to 
selectively vary this length on an individual element-
by-element basis.  An equivalent operation on a 
GPGPU would be to find the minimum timestamp 
among the next update times of all elements, and 

advance that particular element to its update time.  
However, it then becomes difficult to thereafter 
selectively modify the update times of that element’s 
neighbors. 
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Figure 7: Speedup of CPU-based DES 

algorithm relative to CPU-based TS algorithm 

To accomplish this, it becomes necessary to update 
all elements of the grid, not just the neighbors, since it 
is necessary to stream all the grid elements anyway, 
even if one wanted to only update the neighbors alone.  
Reasoning this way, a “hybrid” algorithm emerges 
naturally that combines the time-stepped nature of 
synchronous updates to all elements with the variable 
timestep support of DES.  This is realized in the hybrid 
algorithm shown in Figure 8, which is surprisingly 
simple.  Each individual element computes its next 
“safe” update timestamp in step 1.2.  The minimum 
among all update times is chosen as the next timestep, 
and a synchronous update of state is performed across 
all elements in step 1.5.  While the variability of 
minimum timestep mimics the DES nature of dynamic 
updates, the synchronous updates mimic the collective 
nature of state updates of the time-stepped method, 
thus giving the hybrid scheme.  The schematic diagram 
corresponding to the hybrid algorithm is shown Figure 
9.  The schematic shows that global synchronous 
updates are performed at every discrete event point.  
Note that multiple discrete event points become 
merged into a single update step during synchronous 
updates (which turns out to be a key benefit with 
GPGPU). 
Advantages: While the hybrid is surprisingly simple, it 
provides some non-intuitive advantages when executed 
on a GPGPU.  First, a synchronous update can result in 
faster time advances globally, leading to faster 
evolution of state as compared to time-stepped method. 



1. While not end of simulation 
 /*Find next update times for all elements*/ 
1.2 For all (i,j): dtij = compute_dt(Q,i,j) 
 /*Find minimum among all update times*/ 
1.3 dtmin = min(dtij) of all (i,j) 
 /*Advance current simulation time*/ 
1.4 tnow += dtmin 
 /*Advance all grid elements to current time*/ 
1.5 For all (i,j): Qij += Qdotij * dtmin 

Figure 8: Hybrid algorithm 

Secondly, simultaneous events are processed in 
parallel on the fragment processors of GPGPU.  In a 
CPU-DES, simultaneous events are processed one at a 
time (i.e., grid elements that have the same update time 
are sequentially processed), where as such simultaneity 
is naturally processed in a single step (1.5) in the 
synchronous update in the hybrid algorithm.  This 
effect is pronounced when many grid elements have 
the same value for their next update timestamps (which 
is often possible in initial stages of diffusion with large 
grid sizes).  Thirdly, computing the minimum update 
time is logarithmic in time complexity on the GPGPU 
due to the availability of hierarchical reduction 
algorithms on streams[2].  This makes the overhead for 
computation of the minimum timestep to be 
comparable to that of event list management on a CPU. 

 
Figure 9: Schematic of hybrid simulation 

Note that this algorithm differs from synchronous 
event processing algorithms such as described in [14].  
The operation of the hybrid algorithm is somewhat 
akin to that of variable timestep algorithms, but differs 
from them in the fact that all elements are processed in 
parallel at each timestep, unlike on a single CPU.  
Moreover, the hybrid algorithm is akin to variable 
timestep algorithms only operationally, but retains the 
unique capability of advancing each element 
independently.  In fact, the synchronous global update 
is a “free” operation for each local update, because of 
the stream processing nature of GPGPUs.  Also, 
repeatability is not affected by parallel processing 
because the write operations on the input do not take 
affect (i.e., input is not affected by output) until all 
writes are completed. 

The runtime performances of hybrid algorithm on a 
GPGPU (GPU-Hybrid) and on a CPU (CPU-Hybrid) 

are shown in Figure 10.  The 16-fold speedup of GPU-
Hybrid over CPU-TS makes it the fastest among all 
variants.  In particular, it is more than twice as fast as 
the optimized CPU-DES approach which is the fastest 
sequential implementation on a CPU.  The reason is 
that GPU-Hybrid not only reaps the advantages of 
leaps in time due to DES-style operation, but also 
benefits from fast parallel (stream) processing within 
each synchronous update.  That parallel processing on 
the GPGPU (by fragment processors) contributes 
significantly to this speedup is reinforced by the low 
speedup of the same algorithm on a CPU (CPU-
Hybrid). 
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Figure 10: Speedup of CPU- & GPU-based 
hybrid algorithms relative to CPU-based time-

stepped algorithm 

3.5. Additional Discussion on Performance 
It is clear that the CPU-based simulations are faster 

than GPGPU-based simulations for smaller problems 
sizes, presumably due to their containment in the 
CPU’s L2 cache.  This is in line with the well-known 
rule of thumb that the Intel Pentium 4 processor 
operating mostly off its L2 cache outperforms an ATI 
or NVIDIA GPU despite the GPGPU’s concurrent 
processing and asynchronous memory operations.  
This explains the slow down (speed up less than 1.0) 
for 50x50 and 100x100 sized grids. 

The real benefit of GPUs’ streaming architecture in 
fact becomes truly evident on larger problem sizes that 
exceed the L2 cache size of the CPU (e.g., 500 x 500 x 
8 bytes/variable x 3 variables = 6MB, which is more 
than the 2MB L2 cache of the Intel processor we used).  
In these scenarios, the GPGPU starts posting gains 
over CPU, and delivers performance almost equal to or 
greater than an optimized DES version executing on a 



CPU.  Brook documentation states that a kernel 
function can have any number of output streams.  
However, we found that the runtime is buggy when 
more than one output is generated by a kernel function.  
One reason for this discrepancy could be due to the 
fact that we used a NVIDIA GeForce 6800 Go, which 
is a portable version of the Brook-tested GeForce 
6800 Ultra.  Our implementation in Brook hence was 
constrained by a single output stream, and could be 
optimized to potentially run faster if multiple output 
streams were employed. 

4. Generalized DES on GPGPU 
We now turn our attention to extending these 

approaches to a more generalized set of DES 
applications.  The GPGPU computation paradigm 
presents significant challenges to realizing the 
traditional DES application programming interface in 
full generality.  We describe the typical event/LP 
model in traditional DES/PDES, and then discuss how 
such an interface relates to the GPGPU platform 
constraints.  Here we focus on an event-oriented view 
[14] of DES.  Process-oriented views are considerably 
more complex to implement on the GPGPU (due to 
lack of stack context support) and not considered here. 

In traditional (event-oriented) DES, events are 
processed in time stamp order.  In general, the 
simulation state is organized into multiple logical 
processes (LPs).  Time-stamped events are sent from 
one (source) LP to another (destination) LP.  During 
processing of an event, more new events could be 
generated by the source LP to any subset of LPs 
(including the source LP itself).  The processed event 
is then noted as “consumed”, which removes the event 
from the event list and makes its memory eligible for 
reuse.  As part of event processing, the LP’s state 
memory is modified.  Unfortunately, this classical style 
of event processing simply does not carry forward to 
GPGPU platforms for the following reasons: 
1. Since processing cannot be performed on events (or 

LPs) one at a time in von Neumann style, traditional 
event processing simulation loop does not apply to 
GPGPUs.  Consequently, isolated, individual 
processing of events is extremely inefficient on 
GPGPU’s streaming architecture. 

2. The notion of sending events from one LP to another 
is straightforward to implement on the CPU.  
Conceptually if an event E is to be sent by LP i to 
LP j, it is realized as an assignment similar to: 
Event[i][j]=E.  However, this is not easily 
implemented on a GPGPU either, because of lack of 
scatter operations as discussed in Section 2.1. 

3. Also, the possibility of one event generating multiple 

events is relatively difficult to realize in the 
streaming paradigm of GPGPUs, due to significant 
performance overhead incurred by dynamic 
variability of stream sizes. 
On the other hand, a GPGPU does help perform 

parallel processing of simultaneous events naturally.  
As we saw, the hybrid algorithm shown in Figure 8 
naturally captures the availability of all simultaneous 
events and opens them up for parallel processing on the 
fragment processors of the GPGPU.  The GeForce 
6800, for example, has 16 fragment processors, which 
opens up 16-fold parallelism for processing 
simultaneous events.  A CPU on the other hand 
processes simultaneous events sequentially, one at a 
time.  Overall, it appears as though existing DES (and 
PDES) conceptual frameworks need to be rethought 
from scratch.  The key to realizing DES on GPUs is to 
cast traditional events and LPs into a stream processing 
paradigm supported by GPGPUs. 

4.1. GPGPU Usage Alternatives in DES 
GPGPUs can be put to use in DES in more than one 

way.  For example, one could use GPGPUs with a 
traditional CPU-based event scheduler as usual for 
DES.  In this scheme, any intensive computation that is 
present in intra-event processing can be delegated to be 
performed on the GPGPU.  The GPGPU is essentially 
used as a co-processor during each individual event 
processing.  Somewhat similar to the line-of-sight 
calculations used in [6], this style of DES is 
particularly suitable for medium- to coarse-grained 
events that entail heavy arithmetic processing (such as 
linear algebra or transcendental function 
computations).  Also, this approach is relatively easy to 
adapt an existing application to use GPGPU. 

A more challenging approach is to use the GPGPU 
as a core processor rather than as a co-processor. In 
this “all-GPU approach,” the entire DES event 
processing is performed on the GPGPU, with little 
mediation from the CPU.  The GPU-Hybrid algorithm 
in Figure 8 is an example of this type of approach.  In 
general, two streaming alternatives can be envisioned: 
1) “Stream of events”, in which the event list is stored 

as a stream of events, and the entire event stream is 
fed as input to an event processing kernel on the 
GPGPU.  The kernel processes only those events in 
the input event stream whose timestamps are less 
than safe/allowed time, and leaves the others 
marked unprocessed. 

2) “Stream of LPs”, in which all the logical-processes 
are stored as a single stream, and fed through an LP-
processing kernel, which processes all events of 
each LP that are eligible for processing.  This kernel 



processes only those LPs who have events whose 
event time is less than safe/allowed time. 
Although event stream and LP stream schemes 

appear to be two distinct possibilities, they are in fact 
necessitated by the GPGPU’s streaming and gathering 
architecture (and lack of scatter) to be one and the 
same approach.  This is because, in order to process an 
event, the event’s LP state must be updated as well.  
Also, in order to send/receive events, the source and/or 
destination LP state should be available at the time of 
an event processing.  Thus, the only data structure that 
seems feasible is one in which an LP has a fixed 
number of events that it has sent to other LPs.  This 
data structure allows events and LP state to be co-
located, allowing them to be read and written in the 
event processing kernel.  The resulting output stream 
will be an updated LP stream for use in the next 
iteration of simulation. 

5. Conclusions and Future Work 
GPGPUs offer a unique set of computational 

features that should prove useful for efficient execution 
of DES applications.  Also, their mass market enables 
cost advantages via economies of mass manufacture.  
GPGPUs thus represent highly promising platforms for 
efficient (and cost-effective) execution of DES 
applications, but significant new research is needed to 
redesign traditional DES/PDES approaches into new 
stream-based paradigms for GPGPU platforms. 

While time-stepped approaches have been studied 
in simulations using GPGPUs, to the best of our 
knowledge, this is the first work to explore DES using 
GPGPUs, and to properly compare the best sequential 
(DES-based) simulation on the CPU against a 
comparable technique on GPGPU.  The results 
demonstrate the benefits of GPGPUs, showing two-
fold improvement of GPGPU-based DES 
implementation over a traditional CPU-based DES 
execution.  Discretization is thus helpful to speed up 
the simulation relative to time-stepped simulation.  
However, for more general DES applications, the 
traditional discrete event simulation loop seems 
inapplicable to GPGPU’s stream processing style of 
computation, and hence a hybrid (discrete plus time-
stepped) approach seems more appropriate.  The 
performance results reflect this relative ordering of 
approach. 

Additional research is needed to optimize DES 
variants on GPGPUs, both in terms of algorithms as 
well as optimized system implementations.  For 
example, uncovering additional parallelism via 
lookahead across fragment processors could be 
explored.  Similarly, optimized implementations 
directly over lower-level frameworks such as Cg 

language (as opposed to using Brook) can help 
achieve much higher performance for tuned DES 
applications.  Simulations with greater arithmetic 
intensity are to be explored for even better suitability to 
the GPGPU platforms.  We are also exploring the 
performance of physics models such as particle-in-cell 
models in this light. 
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