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Abstract

With advances in hardware-assisted full virtualization
technologies, system virtualization based on the virtual ma-
chine monitor (VMM) has received much recent attention.
Using the Xen/IA64 hardware virtual machine implemented
on Intel R© Virtualization Technology for Itanium R©(VT-i), we
investigate the design of a virtual software hash translation
lookaside buffer (TLB) based on the virtual hash page table
(VHPT). Experimental results show that the proposed de-
sign can significantly improve the performance of the hard-
ware virtual machine of Xen/IA64. Our contributions are
the following. First, we design and implement in the VMM
a virtual hash TLB algorithm to optimize the system perfor-
mance of VT-i guest virtual machines. Second, we quantify
experimentally the performance benefits of the hash TLB for
VT-i guest virtual machines and analyze the performance
impact of the software VHPT walker with the hash TLB al-
gorithm. Lastly, we present experiments to verify, in an SMP
virtual machine system environment, the superior scalabil-
ity of the hash TLB approach.

1 Introduction

The concept of virtualization was first proposed by
IBM in the 1960s as a means to share access to expen-
sive hardware resources, and was widely applied in IBM
VM360/VM370 systems [10]. Recently, large gains in com-
puting system efficiency drive demands on the use of virtu-
alization for different applications, such as resource mul-
tiplexing, performance isolation between applications, dy-
namic migration of workloads, and security research. A
number of excellent projects have appeared in the area, in-
cluding VMware [14], Xen [3, 6, 17, 1, 11], and KVM [18].
Among the projects, Xen developed at the University of
Cambridge has found widespread use due to its flexi-

ble structure and excellent performance. The Xen VMM
aims to enable the concurrent execution of multiple high-
performance virtual machines through targeted modifica-
tions of the guest operating systems. Mutiple guest OS
can run on the VMM layer of a single physical platform
at the same time. While changes are made to the guest
OS kernel, the application binary interface of the OS is
not changed. Hence, the guest OS in Xen is fully binary
compatible with higher layer applications. Xen’s method
of virtualization is called paravirtualization. Other projects
employing paravirtualization include Denali [20, 21] and
Disco [5], among others.

Paravirtualization requires kernel changes so that the
guest OS is aware of its execution in a virtual environment,
and can use the knowledge to achieve high efficiency and
scalability. Hence, unmodified applications can run directly
in the OS of the VM, and achieve performance close to di-
rect execution on comparable native hardware. In contrast
to paravirtualization is a virtualization approach known as
full virtualization, which does not require changes to the OS
of guest VMs.

Traditional CPUs, however, do not consider support
for system full virtualization, and hence contain a number
of virtualization holes [16]. Paravirtualization fills these
holes by suitably modifying the guest OS. However, since
changes to the OS are often infeasible in practice, cer-
tain systems realize full virtualization through a trap-and-
emulate model [2]. The model uses dynamic binary instruc-
tion rewrite to force the execution of certain privileged in-
structions by the application to trap to the VMM, which then
emulates the execution of the instructions. Clearly, the ap-
proach results in significant performance loss and increased
system complexity. Current systems that employ the trap-
and-emulate approach include VMware ESX Server [19]
and Virtual Server [13].

Comparing paravirtualization and full virtualization, we
notice that paravirtualization has better scalability, but its
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implementation will require modifications of the guest OS
kernel, thereby limiting its applicability. In contrast, al-
though full virtualization does not require kernel changes,
its realization through the trap-and-emulate model in tra-
ditional CPUs results in significant performance loss and
system complexity. These factors motivate Virtualization
Technology, or VT for short, proposed by Intel. Intel VT
aims to fill traditional virtualization holes in the CPU de-
sign, and provide hardware support for virtualization in the
chip. It leads to improved performance and convenient im-
plementation of virtualization platforms.

In order to realize full hardware virtualization on the Ita-
nium R© platform, Intel proposes the VT-i technical speci-
fication [9] for extending the design of the CPU and other
components to remove the virtualization holes. Based on
VT-i, the Intel OpenSource Technology Center (OTC) im-
plements support for full virtualization of virtual machines
on Xen/IA64, so that various OSes including Linux and
Windows can run on the Xen VMM without modifications.
The architecture of the Xen/IA64 full virtualization support
is shown in Figure 1. Notice that, in the rest of the paper, we
will refer to a full virtualization virtual machine as a VT-i
virtual machine, also know as HVM domain.
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Figure 1. Xen architecture with VT-i domain
support.

In this paper, we analyze the performance bottleneck of
MMU virtualization on Xen/IA64, when Xen is extended to
support full virtualization. Our analysis motivates us to pro-
pose a software hash TLB optimization algorithm assisted
by the virtual hash page table (VHPT) [8], in order to op-
timize the TLB virtualization performance of VT-i virtual
machines. In a Xen/IA64 implementation, because a guest
VM under paravirtualization can work cooperatively with
the VMM to virtualize MMU components, the VMM can
obtain information for identifying the types of most virtual
address accesses. The software TLB does not need to track
changes in application data accesses. Hence, the software
TLB implementation is simple, and can be accomplished
through a single TLB approach.1 In the single TLB de-

1On the Itanium architecture, the TLB is divided into the TR (Transla-
tion Register) and the TC (Translation Cache); we refer to the TC in this
context.

sign, each virtual processor of guest VM has only one vir-
tual TC entry, which is shared by all the processes of an
OS running on the VM. The design only implements the
smallest number of TLBs required by the IA64 to ensure
the VM’s forward progress. While the single TLB works
well with paravirtualization, it is inadequate for VT-i based
full virtualization. In full virtualization, because the guest
OS is unmodified, IO accesses are carried out through em-
ulated execution according to the Qemu model.2 A guest
VM is unware of its execution in the virtualization environ-
ment. Hence, it depends on the ability of the guest VM TLB
to store information about virtual memory accesses in the
MMIO space. Without the information, the VMM is unable
to distinguish between an IO access and a main memory
access, and will have to inject a corresponding page fault
into the OS of the guest OS for the decision. As a result,
a guest VM will experience a significant performance loss
when executing an IO intensive workload.

Therefore, in the full virtualization of the MMU, pro-
cessing of memory accesses by a multi-software TLB algo-
rithm is required for good performance. Driven by the effi-
ciency concern, we propose a VHPT-assisted software hash
TLB to fulfill the multi-software TLB design goal. Based
on the design, by handling guest VM TLB misses through
guest VHPT lookup by the software VHPT walker of the
guest VM, we reduce by 65% the number of page faults in-
jected into the OS of the guest VM under certain workloads.

2 Background Information

In this secition, in order to better understand our work,
we discuss the implementation of TLB virtualization. Then,
specifically we talk about single TLB approach in the im-
plementation of paravirtualization.

2.1 TLB virtualization

The TLB is a critical component in the MMU design.
TLB mapping is required in every virtual address access for
either data or instruction. Hence, the TLB design directly
affects the CPU throughput. The TLB in the Itanium archi-
tecture is divided into the data TLB (DTLB) and the instruc-
tion TLB (ITLB), which are responsible for resolving data
and instruction virtual address accesses, respectively. The
DTLB and ITLB are, in turn, divided into the translation
register (TR) and the translation cache (TC). The TR allows
operating systems to pin critical virtual memory translations
in the TLB mappings, including accesses to those per-CPU
data, kernel memory areas, page tables, and instructions that

2Qemu is an emulation model for a full computer system, including
its processor and peripherals. Xen uses the peripheral system in Qemu to
provide device emulation in full virtualization.
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cannot be allowed to cause a TLB miss. The TR is not af-
fected by the CPU TLB hardware replacement strategy, un-
less the software uses explicit TR management instructions
to purge it, while the TC replacement algorithm is imple-
mented in hardware. Notice that for the Itanium, apart from
the TC replacement in hardware and the VHPT TLB refill
function, both the insertion and deletion of TLB entries are
controlled by software. Such a design is in contrast to the
x86 platform.

To virtualize the TLB, the VMM can implement the TLB
management functions in software, through catching the ex-
ceptions raised by the (modified) guest OS as it attempts
to manage the TLB. (Notice that exceptions are raised be-
cause the guest OS in fact does not have sufficient privilege
to perform TLB operations.) The TLB virtualization must
satisfy the Itanium minimum requirement that there are at
least eight TRs and one TC for both the instruction and data
components. In addition, because the OS specification for
using the TR is fixed, the VMM virtualization must use the
same number of software TRs implemented by the array
structure to store the corresponding information. On the
other hand, because on the physical machine, the TC re-
placement is controlled by hardware which may implement
various strategies, the TC virtualization can likewise use a
flexible implementation strategy controlled by various soft-
ware algorithms. The strategy is chosen so that the TC in
the guest VM can maximize the efficiency of address trans-
lations in the VM.

2.2 The single TLB approach in paravirtualiza-
tion

Paravirtualization in the Xen/IA-64 has used a single
TLB approach based on the VHPT without collision chain.
The VMM under such a design implements the smallest
number of virtual TLBs required by the Itanium specifica-
tion. For paravirtualization, the single TLB approach has
the following characteristics:

• Simple implementation logic: Because the virtual
ITLB and DTLB have only one TC entry, the insertion
and replacement algorithms are relatively simple.

• Performance benefits of the TLB flush-all virtual-
ization: In some cases, the OS may use the ptc.e in-
struction to purge all the TLB entries. In the virtualiza-
tion environment, the VMM similarly needs to purge
all the TC entries from the virtual TLB. If we can en-
sure that there is only one entry present in the virtual
TLB, the execution time will be reduced and the VM
will get better performance.

Although the single TLB approach works well with par-
avirtualization, it may not be suitable for full virtualiza-
tion such as using Xen/VT-i, because it may cause many

page faults to be seen by the guest OS. We used the single
TLB implementation for the Xen/IA-64, and ported it to the
Xen/VT-i. In the implementation procedure, we discovered
the following shortcomings of the single TLB when it is im-
plemented in VT-i. First, because an unmodified OS kernel
is used in the guest VM, the guest VM is unable to coop-
erate with the VMM to reduce TLB misses. The VMM
is required to cache many guest TC entries to cache more
translations for the guest VM. Second, since all devices of
VT-i VMs are emulated in software, it is necessary for the
VMM to identify the MMIO and IO accesses among the vir-
tual address accesses. The single TLB with one TC does not
have enough capacity to store all such information. Hence,
IO operations are often not identifiable by the VMM, and
have to be forwarded to the guest OS for further investiga-
tion. Each forwarded entry may cause the replacement of
an old entry. In the case of an IO-intensive application, the
replacements will in turn lead to excessive changes in the
virtual TLB entries, which produce more and more alter-
nate TLB misses3 for the guest OS and cause poor perfor-
mance for the VM (since the Linux OS, for example, maps
the MMIO/IO address space to region 6 and the VHPT is
always disabled in region 6).

3 Hash TLB Virtualization based on VHPT

In Xen/IA-64, the VMM implements a TLB virtualiza-
tion approach based on the VHPT. In the approach, the
guest VM TLB is stored, after suitable P2M translations4,
in the long format VHPT, which can be looked up by the
hardware VHPT walker. The approach fully leverages the
characteristics of the Itanium MMU to maximize the perfor-
mance of MMU virtualization in the guest VM. Compared
with the hardware TLB, the VMM has the option of choos-
ing the best storage format for each guest VM, including
the bookkeeping data structures, the lookup algorithm, and
the number of TLBs stored for the VM. For the long format
VHPT, the VMM can also decide in software (1) whether
the hash table has a collision chain and, if so, the length of
the collision chain; and (2) the size of the VHPT.

Besides, the VMM can control the existence format
of the VHPT: (1) One single system VHPT in the whole
VMM; (2) one VHPT per logical processor (LP); (3) one
VHPT per virtual CPU (VCPU); and (4) one VHPT per
virtual machine. In this paper, we will not compare the
performance of the four approaches, but provide the clas-
sification to distinguish between different implementation
methods for the paravirtualization guest VM and the VT-i

3A kind of translation misses in the TLB and the VHPT is meanwhile
disabled.

4P2M translation is a Xen term, which refers to the translation of an
address from the guest physical address space to the machine physical ad-
dress space.
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guest VM. We used the first approach for the PV domain in
an early implementation. It was changed to the second ap-
proach with the support of the SMP guest VM implemen-
tation. Finally, we provided the implementations of both
approaches 2 and 3, and allow the user to select the im-
plementation to run at system startup time. For the VT-i
guest VM, we fully evaluated the scalability of the SMP
guest VM in the early implementation phase, and adopted
approach 3, namely to provide one VHPT per CPU. The ap-
proach avoids the overheads of locking when the VHPT is
shared by multiple virtual machines.

In the TLB virtualization, the paravirtualization adopts
the 8 TR + 1 TC model. For both the ITLB and DTLB, the
model represents the smallest number of TLBs to ensure
the system’s forward progress according to the IA64 spec-
ification. Such a model is the single TLB approach men-
tioned in the previous sections. For the VT-i virtualization
implementation, a 8 TR + x TC, x > 1, hash TLB model
is called for by the earlier analysis. That is, for both ITLB
and DTLB, we implement the number of TRs required by
the IA64 specification and, in addition, use multiple TCs to
allow the storage of more TLB entries for each VCPU of
VM. In this approach, the VMM uses a hash table, similar
to the VHPT, to manage the TC entries of a guest VM TLB.
We call this the hash TLB approach. The design of the hash
TLB has the following characteristics:

• Unified management of the ITLB and DTLB: On
the Itanium, the TLB of a processor is divided into
ITLB and DTLB. Although the split TLB has certain
performance advantages, the split virtual ITLB and
DTLB design will also increase the system complexity
significantly under virtualization. In addition, Since
the mainline OSes, such as Windows, Linux, use TLB
in the unified way, with our hash TLB approach, we
can unify the ITLB and DTLB under the same TLB
model. The management workflow is similar to the
VHPT. By not distinguishing between the ITLB and
DTLB, the system design is simplified.

• Storage of more guest VM TLB entries at high ef-
ficiency: By storing more TLB entries for the guest
VMs, the VMM can handle TLB misses in guest VMs
by looking up the required information in the hash
TLB. This reduces the number of TLB misses and
page faults injected by the VMM into a guest VM.
According to our experimental results (Table 1), under
the same workload (system bootup and a three-minute
kernel build), the hash TLB can reduce by 95.2% the
number of page faults injected into the guest OS for
processing. In addition, the results show that a large
number of ALT DTLB misses seen by the single TLB
approach can be reduced to a minimal level by using
the hash TLB. The large number of ALT DTLB misses

in the case of the single TLB is due to the following
reason. When the guest VM is processing IO, the sin-
gle TLB is unable to store the multiple TLB entries
that contain information about MMIO accesses by the
guest VM. Hence, the VMM cannot identify whether a
guest VM memory access is in the IO space or not. It
is then required to inject an ALT DTLB miss into the
guest VM for resolving the memory access.

• Flexible management: The hash TLB is able to sup-
port the huge TLB mode, and furthermore, flexible
management strategies for the huge TLB. For exam-
ple, all the 256M TLB entries in the guest VM can first
be inserted into the hash TLB. Then, according to the
VMM implementation strategy, the 256M entries can
be divided into smaller 16K pages and are either (1)
inserted into the VHPT or TLB in a single batch, or
(2) inserted into the VHPT or TLB one page at a time.
Flexible implementation is therefore possible based on
the results of functional analysis.

• Intercept of information accesses in MMIO space:
MMIO/IO accesses in VT-i are realized through a soft-
ware emulation model. The VMM must therefore be
able to identify all the IO accesses in the guest VM,
and direct the accesses to the emulation algorithms ac-
cordingly. If mappings to the IO space are stored by
the VMM, the VMM will be able to decide whether a
memory access should be handled as an IO operation
or not. Because the hash TLB is able to store multi-
ple TLB entries, TLB translations in the IO space of
the guest VM are very likely to be found in the hash
table. Hence, the VMM can easily identify an IO ac-
cess, greatly reducing the number of page faults in-
jected into the guest OS.

• Effective hash table collision management: To ef-
fectively manage possible hash collisions, we intro-
duce a collision chain mechanism in the hash TLB im-
plementation. The collision chain reduces the chance
that a TLB entry is completely replaced as a result of
collision.

• Excellent scalability: In the hash TLB design, we en-
sure that a hash TLB and VHPT are allocated for each
virtual CPU. This ensures the scalability of the guest
VM system for supporting guest SMP support.

3.1 Two hash TLB implementation strategies

There are two methods to implement the hash TLB based
on the VHPT. We call the first one a full track method.
Essentially, when the guest VM inserts a TLB entry, the
VMM, while making insertions into the VHPT and the
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TLB Page Fault Type
Virtualization TLB Alt TLB VHPT Page Not

Approach Miss Miss Miss Present
Single TLB 29.069 1147.6097 11.5133 39.3397
Hash TLB 2.6183 0.017 12.1177 44.7206

Table 1. Number of page faults (x104) injected
into the guest OS for the two virtualization
approaches.

physical TLB, makes also an insertion into the guest VM
hash TLB for tracking. Hence, all the mappings in the
VHPT and the physical TLB can be found also as corre-
sponding entries in the guest VM hash TLB. We call the
second method a partial track method. Essentially, a frac-
tion of the TLB entries in the guest VM are inserted into the
hash TLB, while the remaining fraction are inserted into the
system VHPT and physical TLB. The two methods require
different algorithms for TLB entry insertion/removal, and
for deallocating a guest VM TLB.

3.1.1 Full track method

An evaluation of the full track method is as follows. On
the one hand, it is extremely flexible. It can track the TLB
entries for all the current activities of the guest VM. Global
purge of the TLB under SMP guest VM support is also more
simple. On the other hand, the memory overhead can be
high in order to ensure that all the entries in the guest VM
TLB are able to fully cover the VHPT and the TLB. The
overhead is in spite of the fact that managing a guest VM
TLB miss requires only the guest virtual TLB hash table to
be searched for an available translation. In addition, in recy-
cling the collision chain of VTLB entries, we must repeat-
edly reset the region register [8] to clear the corresponding
entries in the VHPT.

3.1.2 Partial track method

The partial track algorithm makes use of the hash TLB,
VHPT, and machine TLB resources. It stores one part of
the guest TLB in the hash TLB, and the other part in the
VHPT and machine TLB. The main disadvantage of the
partial track method is the need to look up target mappings
in potentially three different places, namely the hash TLB,
VHPT, and machine TLB. Our current system implements
partial track. In future work, we will compare the perfor-
mance of the full track method with that of the partial track
method in aspects of flexibility, efficiency, and scalability.

3.2 Enhancing the hash TLB algorithm by using
the software VHPT walker

The virtual hash page table (VHPT) in the Itanium ar-
chitecture is an extension of the limited hardware TLB. The
VHPT can be looked up in hardware by a VHPT walker.

Mappings in the VHPT are automatically inserted after they
are resolved, similar to the x86 MMU for refilling TLB en-
tries. When the processor fails to find a requested TLB map-
ping and the VHPT walker is enabled, the CPU can search
the VHPT in memory and, if an entry is found, insert the
entry into the TLB, to avoid future TLB misses. In fact, the
VHPT in Itanium has two hardware support formats: the
short format and the long format. The long format is a su-
perset of the short format. It supports the protection key,
region id, and a collision chain structure implemented in
software. The hardware VHPT walker can be completely
turned off in principle, but doing so will greatly reduce the
system performance. By the results in Gray et al. [12] for a
Linux system, the average TLB refill overhead is only about
45 CPU cycles when the the VHPT walker is enabled, and
is about 160 CPU cycles when it is disabled. Hence, the
VHPT walker is typically enabled on Linux and Windows
systems.

As noted above, the OS with VHPT enabled can greatly
reduce the CPU time of reloading the TLB. In a virtual-
ization environment, we can implement a software VHPT
walker for each VCPU, and use it to look up the requested
mappings in the guest VHPT table, when the guest VM ex-
periences a TLB miss. The software VHPT walker imple-
ments all the functions of the hardware VHPT walker, and
performs in a functionally identical manner. To simplify the
system design in our initial implementation, we did not in-
spect the guest VHPT on a TLB miss, but rather injected a
TLB miss directly into the guest VM for further processing.
In this case, unnecessary page faults will be injected, which
increases the average time in resolving a TLB miss. Our
experimental results in Table 2 verify that on TLB misses,
using the guest VM VHPT can greatly reduce the number
of page faults, by about 64.42% in a kernel build. The time
for the kernel build is also reduced by about 5.4%.

Page Fault Type
Guest ITLB DTLB VHPT Page Not
VHPT Miss Miss Miss Present
OFF 3920721 7540324 432567 16532
ON 27340 62342 328746 3820342

Table 2. Total times of page faults injected into
the guest OS in a kernel build.

4 Hash TLB Performance Evaluation

To quantify the performance of the VHPT-based hash
TLB algorithm relative to the single TLB, we have imple-
mented, for each of VT-i virtualization and PV virtualiza-
tion, the two virtualization approaches. We abbreviate the
single TLB for PV implementation as STPV, the single TLB
for VT-i implementation as STVT, the hash TLB for PV im-
plementation as HTPV, and the hash TLB for VT-i imple-
mentation as HTVT.
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4.1 Experimental platform

We use a large number of micro-benchmark tools, in-
cluding Kernel Build, Byte, CPU2000, System Bench, and
Specjbb2005, for evaluating each of the above four imple-
mentations. Our evaluation environment is as follows. We
use the Intel IA64 Tiger 4 platform with four 1.6 GHz Ita-
nium 2 Montecito processors (each of which has 4 logical
processors) and 32 GBytes of memory. The host machine
and the guest VMs all run the Redhat Enterprise Linux 4
Update 4 OS and the Xen version ChangeSet 12014. A
guest VM is configured to have 10 GBytes of physical mem-
ory and four virtual processors. In evaluating the scalabil-
ity of the hash TLB design, each virtual machine and the
native system is equipped with 6 GBytes of memory and
correspondingly the same number of virtual processors for
equal comparison. Other relevant system parameters of the
benchmark tools will be given for the detailed subsystems
when needed.

4.2 STVT vs HTVT

We evaluate the performance of STVT and HTVT, and
compare it with that of the native OS running on an iden-
tically equipped physical machine. The results are shown
in Figure 2. They show that the hash TLB algorithm, con-
sistent with its design objectives, can significantly improve
the efficiency of both IO intensive and memory intensive
applications.

Because Kernel Build requires a large amount of hard
disk reads/writes, its performance is increased by about
44.34% through the hash TLB approach. The Byte bench-
mark is designed to test the CPU and FPU performance un-
der a large number of memory accesses; HTVT improves
its performance by 32.94%. The FileIO application in Sys-
bench tests the IO performance of the system by requiring a
lot of emulated IO operations; it similarly achieves a signif-
icant performance improvement (by about 31.92%) as a re-
sult of the HTVT algorithm. The OLTP application in Sys-
bench is also an IO intensive case, and the HTVT algorithm
improves its performance by 37.25%. SPECjbb2005 needs
to make large footprint memory accesses in the JVM be-
cause of its emulated database operations; HTVT improves
its performance by up to 50.91%. In summary, the results
show that the hash TLB algorithm can greatly improve the
performance of IO intensive and large footprint memory in-
tensive applications.

4.3 STPV vs HTPV

We have implemented the hash TLB design for PV vir-
tualization. We measure the overall performance of the PV
VMs under both the STPV and HTPV approaches. The re-
sults are shown in Figure 3. They show that the hash TLB

does not improve the performance of the virtual machines
under PV virtualization. The analysis is as follows. It is not
hard to see that under the specialized IO mode of the PV
guest VM, the number of TLB misses as a result of IO op-
erations is reduced. Hence, it is not necessary for the guest
VM TLB to track these accesses. Moreover, because the
guest OS is modified, instructions for manipulating the TLB
can, after paravirtualization, use relatively simple logic to
insert information into the system TLB and VHPT. As a re-
sult, the complex logic of the hash TLB virtualization can
negatively impact the performance of the paravirtualization
approach. From the results, notice that for the CPU2000 In-
teger and Byte benchmarks, HTPV enhances performance
by 0.42% and 3.66%, respectively. For the Kernel Build and
CPU2000 floating point benchmarks, however, the perfor-
mance is reduced in the HTPV implementation. Hence, it is
not clear whether it is beneficial to integrate the HTPV al-
gorithm into the mainline Xen distribution. We notice that,
although the HTPV algorithm can cause small performance
degradations for the PV domain, it is helpful from the point
of view of code maintenance, because it uses the same al-
gorithm for both the VT-i and PV virtualizations.
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Figure 3. Performance comparison for the PV
domain.

4.4 Performance scalability of HTVT for SMP
guest machines

Because of the interdependence between core resources
in SMP systems, support for SMP virtual machines and
the resulting system scalability is a design/implementation
challenge for virtualization systems. We now answer the
question of how well VHPT-based HTVT can achieve the
scalability objective. We present experiments to evaluate
the performance of the VT-i guest machine when it is allo-
cated different numbers of virtual CPUs. We compare the
results relative to the scalability of the unmodified native
OS on a physical system platform.

From Figure 4, notice that HTVT achieves a level of
scalability comparable to that of the native OS. The results
give convincing evidence that HTVT based on the VHPT
is flexible and can adapt well to the level of the proces-
sor resources. It can be seen from Figure 4(a) that, for the
SPECjbb2005 benchmark, the scalability of the guest ma-
chine and that of the native system is quite close. When
there are seven CPUs, VT-i in fact achieves slightly better
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Figure 2. Performance comparison between Hash TLB and Single TLB
performance than the native system. Similar results are ob-
tained for the Kernel Build experiments which are shown in
Figure 4(b).
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Figure 4. VCPU Scalability of VT-i guest OS
with HTVT in a guest SMP environment.

5 Related Work

Xen [3, 6, 17, 1, 11] is a notable VMM project developed
in the Computer Lab of Cambridge University. The VMM
model and PV scheme used in Xen is shown to obtain com-
petitive performance with the native platform. Daniel et al.
report the implementation of vBlade [15] as a port of Xen
to IA-64, employing the PV approach. In vBlade and its
successor Xen/IA64, the single TLB approach is developed
to trace TLB translations in the guest VMs, and the VCPU
in every guest VM has one TC entry, and behaves well for
Xen/IA64. However, single TLB is not a good solution in
the case of full virtualization. This is because if a guest OS
is not modified, all IO devices in the guest OS will be emu-
lated by the Qemu device model [4, 11], and the guest OS
cannot detect if it is running in the virtual environment. In
this case, it has to depend on the VMM to cache previous
MMIO and IO accesses. Otherwise, many page faults will
happen and have to be injected into the guest OS, greatly
degrading the performance of IO-intensive applications. In
the single TLB approach, IO spaces assigned to the guest
VMs are not uniform, and it is hard to ensure that the whole
IO space is covered by one virtual TC entry. Most IO ac-

cesses fail to be detected when a TLB miss happens for the
first time, and many page faults will be injected into the
guest OS. Because of the special memory management unit
(MMU) virtualization model in VT-i, a new TLB virtualiza-
tion technique is required to overcome the bottleneck in the
single TLB approach. Instead of a single TLB solution, we
use a hash TLB approach to improve the efficiency of man-
aging a guest TLB. The hash TLB is highly scalable in the
context of full hardware virtualization; its overhead is less
than half that of the single TLB.

In the Xen/x86 architecture, the VMM uses the shadow
page table [6, 17, 11] to implement MMU virtualization for
the guest VM. Because in the x86, the OS and other soft-
ware has no control over the TLB operations, we can view
the shadow page table as the guest VM virtual TLB. The
efficiency of the shadow page table design directly impacts
the overall performance of the system. In addition, to fur-
ther enhance the capabilities of the MMU virtualization, the
extended page table (EPT) [16] has been proposed for the
IA32 processor in the future VT by Intel. The basic design
rationale of the EPT is to enable the IA32 CPU to directly
use the guest VM page table to map from the guest VM lin-
ear address space into the guest VM physical address space.
As a result, before the guest VM physical address is released
to the system convergence layer, it is passed into the EPT
to map from the guest VM physical address into the host
machine physical address. The design greatly reduces the
number of VM exits 5, which are the key factors of per-
formance issues. The AMD virtualization specification [7]
proposes the NPT, which implements functions similar to
the EPT. It is definitely possible to implement a component
like the x86 EPT in the Itanium architecture to improve the
efficiency of the MMU virtualization. Such an implemen-
tation will, however, increase the system complexity. For
example, one will have to adding the Region ID hardware
virtualization support, in order to avoids address space con-
flicts between the guest VMs as well as side effects in the
CPU internal pipeline design.

5VM exit is an hardware exception which stands for switching context
from guest to VMM
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6 Conclusion

In this paper, we design and implement the hash TLB ap-
proach for Xen/IA64 TLB virtualization to address the per-
formance issues caused by only one single translation entry
in the single TLB approach in Xen with VT-i. Through the
performance comparison between the single TLB and hash
TLB approaches in paravirtualization and VT-i full virtual-
ization, we show that the hash TLB can remove the perfor-
mance bottleneck faced by the single TLB in Xen/VT-i. The
performance study shows that the hash TLB can achieve a
factor of two overall performance for VT-i guest VMs. The
VM performance in the VT-i and PV domains is more than
80% of the native Linux performance in most cases, and is
close to 100% in some cases. Also, our approach resolves
the performance problem caused by too many page faults
being injected into the guest OS. These page faults are gen-
erated by IO accesses in the guest VM. The proposed hash
TLB virtualization has much better adaptability, flexibility,
and scalability than the single TLB. In addition, we analyze
the performance of the hash TLB approach in an SMP en-
vironment. In this environment, the hash TLB has similar
(or sometimes better) scalability compared with the native
platform.
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