
Threaded Dynamic Memory Management in
Many-Core Processors

Edward C. Herrmann and Philip A. Wilsey
Experimental Computing Laboratory, Dept. of ECE, PO Box 210030, Cincinnati, OH 45221–0030

Abstract—Current trends in desktop processor design have
been toward many-core solutions with increased parallelism. As
the number of supported threads grows in these processors, it
may prove difficult to exploit them on the commodity desktop.
This paper presents a study that explores the spawning of
the dynamic memory management activities into a separately
executing thread that runs concurrently with the main program
thread. Our approach works without requiring modifications to
the original source program by redefining the dynamic link path
to capture malloc and free calls in a threading dynamic
memory management library. The routines of this library are
setup so that the initial call to malloc triggers the creation
of a thread for dynamic memory management; successive calls
to malloc and free will trigger coordination with this thread
for dynamic memory management activities. Our preliminary
studies show that we can transparently redefine the dynamic
memory management activities and we have successfully done
so for numerous test programs including most of the SPEC
CPU2006 benchmarks, Firefox, and other unix utilities. The
results of our experiments show that it is possible to achieve
2-3% performance gains in the three most memory-intensive
SPEC CPU2006 benchmarks without requiring recompilation of
the benchmark source code. We were also able to achieve a 3-4%
speedup when using our library with the gcc and llvm compilers.

Index Terms—Many-core, threads, dynamic memory, SPEC
benchmarks

I. INTRODUCTION

Emerging multi-core and many-core processors provide
opportunities for parallel execution of threads in emerging
commodity desktop processors. While these solutions have
been available for some time in the server market, only
recently have such processors entered the low-cost consumer
desktop market. Currently the desktop solutions contain mostly
dual and quad core processors. However, the recently released
Intel Core i7 has four hyper-threading cores (2 threads/core)
which provides support for 8 concurrent threads and in 2007
Intel announced a processor prototype with 80 cores [1]. It is
only a matter of time before commodity desktop computers
contain many-core processors supporting tens to hundreds of
threads per processor [2].

The migration of this much parallelism into the desktop may
prove difficult to exploit fully. Certainly upgraded operating
systems and major application programs such as web browsers
and office tools can be reprogrammed with additional task
level parallelism but even this may not provide sufficient
parallelism for an (for example) 80 core processor. Further-
more, in the commodity market, many users will generally

Support for this work was provided in part by the National Science
Foundation under grant CNS–0915337.

stick with non-upgraded applications when purchasing new
desktop systems. Thus, techniques to transparently increase
the parallelism of existing applications should be explored.

In this paper we examine the possibility of transparently
threading the dynamic memory management activities of ex-
ecuting (system and application) programs. The general idea
is to deploy a new library for dynamic memory management
that forks a new thread for dynamic memory management.
In this library, initial calls to malloc trigger the creation
of a new thread and subsequent calls to malloc and free
cause synchronization with and service from the spawned
thread. Because most systems dynamically link to runtime
libraries, the transparent integration of our dynamic memory
management library is simply a matter of redefining the system
link path to point at our library before the system memory
management library. Of course the potential impact of this
threading is only significant if there is a worthwhile amount
of execution time costs in the dynamic memory management
operations that can be hidden in overlapped execution with
the original application thread. Thus, in this paper, we explore
two issues. First, we examine the execution time costs of
dynamic memory management in programs. In this study we
will examine (primarily) the SPEC CPU2006 benchmarks [3].
Second, we have tested a threaded dynamic memory manage-
ment library to gain some initial experiences and performance
numbers. The library has been deployed on a Linux-based
Intel i7 system and we have successfully used it to execute
a variety of system and application programs, including the
SPEC CPU2006 benchmarks, Firefox, and other unix utilities.

The remainder of this paper is organized as follows: Sec-
tion II presents some of the previous work in optimizing dy-
namic memory management. Section III reports performance
data showing the dynamic memory costs in the SPEC 2006
benchmarks. Section IV explains our implementation of a
dynamic memory library to fork and manage dynamic memory
threads. Section V presents the empirical results of using the
threading dynamic memory management utilities. Section VI
describes how this threaded technique could be applied to
other libraries. Finally, Section VII presents a summary of
our results and contains concluding remarks.

II. RELATED WORK

One of the major issues with current dynamic memory
allocation systems is that they do not scale well with mul-
tithreaded programs. Many of the current standard allocation
systems were designed before multiple processor systems



became commonplace [4]. As a result, memory concurrency
issues were not factored into designing the systems. Since
then, most allocators have been updated to support multi-
threaded programs by using mutex locks around any dynamic
memory function to ensure no race conditions occur. This
is a simple solution, but it adds synchronization overhead
to the critical paths of all allocations and deallocations [5].
The allocation functions can also become bottlenecks when
multiple threads want to allocate or free memory at the same
time. Although a program may be multithreaded, it essentially
becomes sequential when threads must wait before entering
atomic sections of code in the allocation functions [6].

Numerous memory allocators have been created to help
alleviate this problem. Ptmalloc was an extension built on top
of Doug Lea’s dlmalloc that incorporates multiple regions in
the heap so that threads can access different regions of the
heap in parallel [7]. McIlroy et al created an allocator that used
local core memory regions called scratch-pads to localize heap
memory distribution [8]. Dice and Garthwaite [4] and Michael
[7] proposed allocators that avoid using locking mechanisms.
Hudson and associates created a lock-free allocator named
McRT-Malloc [9]. Streamflow [5] is a scalable and locally
conscious dynamic memory allocator. One of the most recent
dynamic memory libraries for multithreaded applications is the
Hoard allocator, created by Berger et al [10]. The Hoard
allocator avoids global locking by creating thread-local heaps
for each processor. These heaps can grow or shrink by taking
blocks from a global heap area. This allocator also helps avoid
false sharing, which occurs when values in separate caches
share the same cache block [10].

All of these allocation systems do well in increasing the
performance of multithreaded applications. However, not all
applications are multithreaded. There are many legacy applica-
tions and programs that are not inherently parallel. Even native
multithreaded applications have limitations as to how much
parallelism can be exploited. There remains a need to find
new ways to extract parallelism out of sequential programs.
Threading common system code such as the dynamic memory
allocation functions is one way to improve the performance of
sequentially coded applications on multiprocessor systems.

III. DYNAMIC MEMORY EXECUTION COSTS

To show that performance improvements obtained by
threading dynamic memory can be meaningful, it must be
shown that the time spent in dynamic memory operations is
significant. The cost of dynamic memory management is heav-
ily program dependent. There are many factors that determine
the dynamic memory behavior of a process: the frequency of
allocations and de-allocations, the size of the requested blocks,
the pattern in which the blocks are requested, and the order in
which the requests occur. All of these attributes can also affect
memory fragmentation, which can slow down the search times
for future allocations. It is also difficult to obtain consistent
measurements because program behavior can change for each
run depending on the program inputs, external interrupts, and
CPU scheduling of other processes.

fp tests percent of total computation
malloc realloc calloc free total

bwaves 0.00 0.00 0.00 0.00 0.00
gamess 0.00 0.00 0.00 0.00 0.00
milc 0.01 0.00 0.00 0.00 0.01
zeusmp n/a n/a n/a n/a n/a
gromacs 0.00 0.00 0.00 0.00 0.00
cactusADM 0.00 0.00 0.00 0.00 0.00
leslie3d 0.00 0.00 0.00 0.00 0.00
namd 0.00 0.00 0.00 0.00 0.00
dealll n/a n/a n/a n/a n/a
soplex 0.01 0.00 0.00 0.00 0.01
povray 0.03 0.00 0.00 0.02 0.05
calculix 0.02 0.00 0.00 0.01 0.03
GemsFDTD 0.01 0.00 0.00 0.00 0.01
tonto 7.52 0.00 0.00 5.96 13.48
lbm 0.00 0.00 0.00 0.00 0.00
wrf 0.17 0.00 0.00 0.09 0.26
sphinx3 0.00 0.00 0.23 0.06 0.29
int tests percent of total computation

malloc realloc calloc free total
perlbench 0.96 0.16 0.00 0.57 1.69
bzip2 0.00 0.00 0.00 0.00 0.00
gcc 0.19 0.00 9.68 0.28 10.15
mcf 0.00 0.00 0.00 0.00 0.00
gobmk 0.01 0.00 0.00 0.00 0.01
hmmer 0.02 0.02 0.01 0.02 0.07
sjeng 0.00 0.00 0.00 0.00 0.00
libquantum 0.00 0.00 0.00 0.00 0.00
h264ref 0.00 0.00 0.00 0.00 0.00
omnetpp 5.86 0.00 0.00 4.24 10.10
astar 0.21 0.00 0.00 0.12 0.33
xlanchbmk 2.26 0.00 0.00 1.24 3.50

n/aData for these programs were not gathered due to their
extremely long callgrind runtimes (still running after 7 days)

Fig. 1. SPEC CPU2006 callgrind profiling results

In this work, we study primarily the SPEC CPU2006 [3]
benchmark suite for our performance analysis. The SPEC
benchmarks are processor intensive and consist of represen-
tative programs from a diverse range of applications. The
SPEC benchmarks are widely used by the computer archi-
tecture community to study design tradeoffs. They also come
complete with batch execution scripts to facilitate their use in
testing and profiling system performance.

We use valgrind [11] to profile the runtime characteristics
of our benchmark programs and to capture results of the com-
putational costs that dynamic memory management adds to
each benchmark program’s total execution time. These results
for the SPEC benchmark suite are summarized in Figure 1.
This table lists the percent of overall assembly instructions
executed inside each of the four main dynamic memory func-
tions (malloc, realloc, calloc, and free). The sum



percent of total computation
Test description malloc realloc calloc free total
Firefox load top 10 most visited websites 1.08 4.88 2.13 1.62 9.71
vlc play 2 mins of 420p video 1.86 1.18 0.40 1.29 4.73
gcc compiling my malloc library 26.37 0.10 0.24 0.10 26.81

Fig. 2. Linux applications callgrind profiling results

of these numbers represents the overall percent of execution
time spent inside all dynamic memory functions, as shown in
the last column. A small collection of standard, fairly CPU-
intensive, Linux applications were also run through callgrind
to gather additional test points. The profiling results for these
applications are given in Figure 2.

The results show that the dynamic memory costs vary
from application to application. The majority of the tests use
dynamic memory sparingly and spend insignificant amounts
of time in the standard memory functions. There are how-
ever three benchmarks that spend more than 10% of total
processing time dealing with dynamic memory management,
namely: tonto, gcc, and omnetpp. tonto is a quantum
chemistry package, omnetpp is a network simulator, and gcc
is the standard GNU C compiler [3]. These applications would
benefit the most from a parallelized dynamic memory library.
Throughout the remainder of the paper, we will be focusing on
the performance of these three benchmarks, as well as some
tests involving code compilation. The distributed dynamic
memory strategy that we propose will focus on improving the
performance of these applications by introducing concurrency
into the memory management subsystem. The next section
details our approach on how to implement such a system.

IV. THREADING DYNAMIC MEMORY MANAGEMENT

When the basic malloc and free functions are invoked,
the processing that is carried out can be split into two
categories: request processing and system processing. Request
processing is the minimal processing required to fulfill the
current request. For a call to malloc, this includes finding
a block of free memory of the adequate size and returning
the address. For calls to free, the request-specific processing
involves marking the block at the specified address as unused.
System processing is the extra processing that takes place to
help manage the system. This includes coalescing free blocks
together, maintaining sorted linked lists of available blocks,
and requesting new chunks of memory from the operating
system. System processing maintains efficiency by keeping the
level of internal and external memory fragmentation low, and
also prepares the system for future requests by performing
maintenance on internal data structures.

Both types of processing are essential to the successful
and efficient operation of a memory management system.
Current implementations of dynamic memory management
systems distribute system processing across all the function
calls. Requests for more memory from the O/S are made
by malloc when no more free blocks are available. The

free function combines newly freed blocks with adjacent
free blocks as they arrive. Both functions maintain internal
linked lists and other data structures that allow for quick
indexing of freed blocks. In single processor systems this
method of distributing the system processing alongside the
request processing works very well. The main program has to
be interrupted at some point to handle the system processing,
so dividing the processing up evenly among the calls allows
the system to carry out each request in a reasonable amount
of time. In multiprocessor environments, the main program
does not have to be interrupted to handle system processing.
If properly implemented the system processing can be done
in parallel with the main program, performing background
cleanup and maintenance operations on the dynamic allocation
system while the main program continues. The goal of our
research is to create a plug-and-play dynamically linked library
that will take advantage of this parallelism by having a separate
thread take care of the system processing.

The first step was to override the default system free and
malloc commands. Since we decided to use a Linux devel-
opment environment, the LD_PRELOAD environment variable
allowed us to easily override the default library search path.
By creating a new dynamic library that redefined the dynamic
memory functions and placing it earlier in the dynamic link
chain, any dynamically linked program will use our replace-
ment malloc and free functions. For our initial research,
we did not want to completely recreate the entire dynamic
memory system. Therefore, we built our memory management
system on top of the original memory functions by allowing
our library to act as a wrapper. The dlsym function recurses
through the dynamically linked library structure to locate the
next occurrence of a particular function. Using this command
our library was able to create new chunks of memory by
calling the system malloc command, and similarly was able
to free memory using the system free.

Our first implementation (which we call pass-through) of
the library created a separate memory manager thread upon
the first invocation of malloc or free. We used the Native
POSIX Thread Library (NPTL) functions to create and syn-
chronize the manager thread with the program threads. Be-
cause the thread communication took so much time compared
to the time spent in calling a single dynamic memory function,
it was clear that another approach was needed. Our second
implementation (called distributed) focused on minimizing the
communication required between the threads. In our case, we
minimized the communication by pre-allocating free blocks of
predetermined sizes, so that they would be ready to be taken by



fp tests % sys lock
cost malloc free

bwaves 0.00 14.90 14.20
gamess 0.00 14.50 14.50
milc 0.01 16.00 16.30
zeusmp n/a 12.00 12.00
gromacs 0.00 6.43 6.43
cactusADM 0.00 8.71 8.24
leslie3d 0.00 8.93 8.50
namd 0.00 12.10 12.10
dealll n/a 19.30 19.10
soplex 0.01 21.70 21.30
povray 0.05 15.30 15.20
calculix 0.03 4.47 4.47
GemsFDTD 0.01 10.30 9.72
tonto 13.48 11.10 11.50
lbm 0.00 32.60 30.90
wrf 0.26 n/a n/a
sphinx3 0.29 26.30 26.30
int tests % sys lock

cost malloc free
perlbench 1.96 19.50 19.80
bzip2 0.00 12.10 12.10
gcc 10.15 20.20 20.60
mcf 0.00 29.20 29.30
gobmk 0.01 16.60 16.40
hmmer 0.07 8.04 8.04
sjeng 0.00 16.50 16.50
libquantum 0.00 28.10 28.00
h264ref 0.00 21.10 21.00
omnetpp 10.10 16.60 16.90
astar 0.33 11.50 11.70
xlanchbmk 3.50 21.80 23.20

n/aData for the wrf benchmark was not gathered due to runtime
errors in the benchmark.

Fig. 3. SPEC benchmark result summary

the next call to malloc. Pre-allocated memory blocks were
sized using powers of two and stored in “bins”, which were
linked lists of blocks of a particular size. On the free side,
addresses of freed blocks of memory were stored in a circular
array to be freed by the memory manager thread.

Results show that our distributed approach performs much
better than the pass-through implementation, but that it re-
mains slower than the original non-threaded library. This led us
to a third implementation that uses a lock-free communication
exchange which we describe more fully below.

In our third implementation (called lock-free), atomic op-
erations are used to ensure data integrity between threads.
To protect access to the free blocks, each bin has a counter
that records the number of free blocks available. Prior to each
allocation, this counter is atomically decremented. If the value
returned from the atomic decrement function is greater than

zero, then a free block is reserved for that allocation and
is guaranteed to be available. An atomic compare and swap
(CAS) instruction is used to remove the address from the front
of the bin. When adding new blocks into the bins, the memory
manager also calls an atomic decrement to reserve the last
block in the bin. Once the last block is reserved, the new linked
list of free blocks is appended to the list. Once the new blocks
are added, the counter is atomically incremented to include the
new quantity of blocks added to the bin. On the free side, a
similar counter is used to assign entries in the address array
to each incoming free request. Atomically incrementing the
counter ensures that no two free requests will reserve the same
array index. The manager thread travels through the free array
freeing any entry that has a valid address.

In addition to removing locks, additional performance im-
provements were made to the lock-free algorithm. In particu-
lar, to prevent blocking during free requests, the free address
array was replaced by a linked list. Each recently freed block
stores a pointer to the next block in the list. Besides preventing
blocking on the free requests, this also allows the manager
thread to free the blocks without having to traverse the entire
address array to check for addresses. The reuse of freed blocks
was also implemented. Instead of releasing a block of memory
back to the system and having to recreate a block of the
same size later, freed blocks are placed directly back into
their respective bins (when the bins are not full). This requires
assigning extra bytes along with each block to store the size
of the block. When the block is freed, these bits are used
to identify which bin to place the block. Freed blocks are
placed back into the front of the bins to provide better temporal
locality for future requested blocks.

V. EXPERIMENTAL RESULTS

To measure the performance of our threaded dynamic mem-
ory implementations, the SPEC benchmarks were executed
using each version of the library. The SPEC benchmark suite
evaluates system performance by measuring the execution
time of a specific benchmark and comparing it to the time
taken by a reference machine. Each test outputs the ratio of
the current system execution time to the reference system
execution time, resulting in the benchmark score. All three
versions of the library were tested but only results for the lock
free implementation are presented (Figure 3). The data shows
the percent of dynamic memory in the original program and
the SPEC performance numbers with and without our lock-
free library. These performance results are from the standard
SPEC scripts and the reported number is the geometric mean
of scores of ten trials. In each of these tests, the variance was
below .003. Lastly, the test system hardware was an 2.66GHz
Intel Core i7-920 processor with 3GB of RAM.

Results from the three most memory-intensive benchmarks
are also displayed in Figure 4 (including data from all three
of our implementations). In these results, system malloc is
the Linux glibc ptmalloc library, which is a modification
of Doug Lea’s dlmalloc. Although the first (pass-through)
implementation performs comparably to the standard library



Fig. 4. Memory-intensive SPEC benchmark results

(system malloc) on the less memory intensive benchmarks, it
produces the worst results on the memory intensive bench-
marks due to the communication overhead involved. The
second (distributed) solution shows much better results on
these tests, but it is still not able to surpass the performance
of the unthreaded library. The third (lock-free) method is able
to provide performance gains of 2-3% in the benchmarks that
have larger dynamic memory costs.

Analysis of callgrind results of the three memory intensive
benchmarks shows that the number of instructions executed
per call to malloc and free were reduced on average by
49% and 62%, respectively, with the lock-free library. Ideally
then, we could have seen a potential maximum speedup of
between 5-8% on these three benchmarks. Of course, cache
effects, O/S threading and scheduling overheads, and other
costs prevent reaching the ideal numbers.

Lastly, we show results with all of the SPEC tests, even
those with minimal dynamic memory costs, to illustrate the
possible negative costs of this approach. Clearly one would
not use our approach for programs with minimal dynamic
memory usage and instead only point the dynamic loader to
our threaded library for applications containing larger amounts
of dynamic memory usage.

To conclude our study with the SPEC benchmarks, we
measured the performance of our lock-free library when
compiling the benchmarks using the gcc and llvm compilers.
To measure the effects of our threaded library we measured the
time it takes to compile the entire benchmark suite using both
the regular system malloc library and our lock-free dynamic
memory library. For each compiler, five runs were performed.
Figure 5 shows the results from the trial runs and the average
speedup gained by using the threaded library. The results show
that our library outperformed the standard library by 3-4%.
This speedup is obtained by simply inserting the new library
into the link path before calling the compile script. No changes
to the source code or hardware were necessary. This speedup
comes no cost to the system by utilizing extra processing
power that would have otherwise gone unused.

gcc
Original time(ns) Threaded time(ns) Speedup(%)

620664871896 606460323756 102.3%
628267056925 603266265277 104.1%
635297406466 605694212411 104.9%
630458667011 607401427149 103.8%
635380815759 606422945462 104.8%

Avg difference: 24164728800 Avg: 104.0%
llvm
Original time(ns) Threaded time(ns) Speedup(%)

723584918236 691882133455 104.6%
724780429654 696974112396 104.0%
714829357879 693343381500 103.1%
729322211743 702887493433 103.8%
723332596904 695465632151 104.0%

Avg difference: 27059352296 Avg: 103.9%

Fig. 5. SPEC 2006 Compile Times using the Threaded Dynamic Memory
Manager with the GCC and LLVM Compilers

VI. FURTHER APPLICATIONS

The multithreaded approach used in our library can also
be applied to other library functions to provide performance
improvement gains in other areas. Dynamic memory functions
are a good candidate because they are used in a variety
of programs and because memory blocks are easily pre-
allocated. However, there are other computation-intensive li-
brary functions that might benefit from multithreading. A
library function must exhibit certain properties in order for a
threading implementation to be considered. In particular these
properties must be met: it must be side-effect free, it must
not rely on external program/machine state information, and
it must be “use” idempotent. For example, the malloc function
will return a pointer to a memory container of acceptable size;
which container may vary, but any suitably sized container is
acceptable. Any library function that can satisfy these require-
ments could be a candidate for optimization through threading.
One example could be the trig functions sine and cosine.
Provided applications call these functions using arguments that
follow a predictable pattern (for example calculating the sine
function in fixed degree increments) then it would be possible
to precalculate future calls.

There are many factors that determine if threading would
actually benefit an application. First the amount of speedup
that can be gained will be limited by the amount of time
a program spends inside the particular functions. As shown
above in the experiments with the threaded dynamic memory
library, applications that do not use dynamic memory exten-
sively will not see speedup as a result of using the threaded
library. Another factor is the amount of overhead involved in
communication between the main program and the manager
thread. The main program must provide data to the manager
thread to allow accurate prediction of future calls. Similarly
the manager thread must transfer the pre-calculated outputs
to the main thread so that they will be available when the



function calls arrive. The amount of time saved in function
calculation must be greater than the communication overhead
in order for speedup to occur. Misprediction penalties will
also affect performance. If the input to the next function call
is mispredicted, the function output must be calculated in-line,
essentially negating any gains that the predicted value would
have provided. Finally the timing of the calls in the program
can also affect how effective library threading will be. There
needs to be time separating successive function calls to allow
the manager thread to predict the next output. If there are many
function calls in a row, the predicted values may not be ready
in time. This would cause the main program to wait for the
output to be calculated, reducing the amount of parallelism
that can be extracted from the function.

VII. CONCLUSION

The results of our experiments show that it is possible to
obtain speedup from traditionally single-threaded applications
by handling the dynamic memory management in a sepa-
rate thread. Our custom library was able to achieve 2-3%
performance gains in the memory-intensive SPEC CPU2006
benchmarks without requiring recompilation of the benchmark
source code. We were also able to achieve a 3-4% speed up
of the benchmark compile time (using either gcc or llvm).
Traditionally dynamic memory libraries have had to deal with
the tradeoff between the complexity of the algorithm and
the speed at which it operates. Multithreading the dynamic
memory system opens up more processing power without
negative performance effects on the main application thread.
This allows more complex but efficient algorithms to be
implemented, providing extra time savings not only from faster
dynamic memory function calls but also from better cache per-
formance of allocated blocks. The multithreading of dynamic
memory allows traditionally single-threaded applications to
transparently take advantage of extra processors provided by
multi- and many-core architectures.

Emerging many-core processors provide unique opportu-
nities and significant challenges for the parallel processing
community. In particular, we need to rethink our conventional
thoughts of parallelism where researchers/software designers
pursue solutions whose success is measured by scalability
with the number of processors/threads. We must begin to
think of these processors/threads as free/cheap resources that
should be exploited whenever possible to gain any (and every)
speedup opportunity. In this paper, we examine the small (but
measurable) overhead of dynamic memory and develop tech-
niques to transparently parallelize some aspects of the dynamic
memory functions. In our case, we were able to reduce the
average number of machine instructions for each malloc and
free call by 49% and 62% respectively. Unfortunately this
does not ultimately provide a corresponding reduction in the
total dynamic memory costs. In our experiments, we achieve
only 30-40% of the maximum possible reduction of dynamic
memory costs. Factors such as cache effects, O/S (threading)
overheads, and synchronization costs can (and do) impede
speedup.

With multi-core processing already here and many-core
processing on the horizon, is it important for programmers
and architects to shift their perspective on computing in order
to take advantage of the benefits many-core processing will
provide. As processors shift from serial to parallel execution,
it is crucial that software adapts to support these changes.
We must find ways to introduce parallelism into programs.
Methods such as predicting arguments for and early invocation
of future function calls that would not be feasible to implement
in a single core system can now thrive on emerging multi-
core architectures. Even recent advances in parallel processor
architectures can be seen through our experimentation. Many
of the tests detailed in this paper were run on an Intel core2duo
processor as well as the i7. None of the tests provided speedup
on the core2duo, whereas the improved multi-core architecture
in the i7 (specifically the much lighter-weight synchronization
primitives) allowed us to report modest speedup success with
the threaded dynamic memory library. Future many-core ar-
chitectures must provide even better support for fine-grained
multithreading similar to the type found in our threaded
dynamic library implementation. Operating system impacts
must also be considered. We are beginning to evaluate our
library with Solaris, and, we are also considering work with
more exotic O/S’s such as Barrelfish [12].

REFERENCES

[1] Intel Press Release, Intel Corporation, “Intel research advanced
’era of tera’,” Intel Press Release, Intel Corporation, Tech. Rep.,
Feb. 2007. [Online]. Available: http://www.intel.com/pressroom/archive/
releases/20070204comp.htm

[2] Intel Corporation, “From a few cores to many: A tera-scale
computing research overview,” Intel Corporation, Tech. Rep.,
2006. [Online]. Available: http://download.intel.com/research/platform/
terascale/terascale overview paper.pdf

[3] S. P. E. Corporation, “Spec cpu 2006,” Jan. 2009. [Online]. Available:
http://www.spec.org/cpu2006/

[4] D. Dice and A. Garthwaite, “Mostly lock-free malloc,” in Proceedings
of the 3rd International Symposium on Memory Management, 2002.

[5] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos, “Scalable
locality-conscious multithreaded memory allocation,” in Proceedings of
the 5th international symposium on Memory Management, E. Petrank
and J. E. B. Moss, Eds. ACM, 2006.

[6] D. R. Butenhof, Programming with POSIX Threads, ser. Professional
Computing Series. Addison-Wesley, 1997.

[7] M. M. Michael, “Scalable lock-free dynamic memory allocation,” Con-
ference on Programming Language Design and Implementation, vol. 39,
no. 6, 2004.

[8] R. McIlroy, P. Dickman, and J. Sventek, “Efficient dynamic heap
allocation of scratch-pad memory,” in The International Symposium on
Memory Management, R. Jones and S. M. Blackburn, Eds. ACM, 2008.

[9] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg, “Mcrt-
malloc: a scalable transactional memory allocator,” in Proceedings of
the 5th International Symposium on Memory Management, E. Petrank
and J. E. B. Moss, Eds. ACM, 2006.

[10] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applications,”
in The Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IX), 2000.

[11] M. Behm, “Using valgrind to detect and prevent application memory
problems,” Redhat Magazine, vol. 15, 2006.

[12] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schpbach, and A. Singhania, “The multikernel: A new os
architecture for scalable multicore systems,” in Proceedings of the 22nd
ACM Symposium on OS Principles, Oct. 2009.


