
EECE 3026 Project 3, revision 1

1 Project 3:
Non-Pipelined Control Unit

Due: 2/27/2024
Points: 50

1.1 The Objective

The principle objective here is to demonstrate
that you understand the basic operation of the
control unit within a simple processor. You can
continue to use a CAD tool for the gate level
circuit design or you can draw the circuits by
hand. CAD tool use and simulation are strongly
recommended, but not required. At your discre-
tion, you can work on this project in teams of
2 individuals. It is solely your responsibility to
form a team. I am not responsible for any team
members performance issues, including a mem-
ber’s withdrawal from the class.

1.2 The Task

Design a single bus gate level implementation of
a machine that implements the following instruc-
tion set. You are to use a hardwired control unit.
The project is worth a total of 50 total points. 40
of these points will be based upon the correctness
of the design and the remaining 10 points will be
determined by (documented) optimizations that
you make to the design. In order to achieve
credit, you must document your optimizations,
describe the trade offs of each optimization, and
justify your selected optimizations. Optimiza-
tions achieved by pipelining will not count, that
is the objective of Project 4.

In addition to solving this problem, you are ex-
pected to deliver documentation to your solution
that is well-organized, modular, and thoroughly
described. You cannot simply turn in a circuit
design and expect credit. Part of your challenge
is to discover a method to deliver a documented
solution that is easy to study, digest, and under-

stand. You will lose points if you do not develop
a suitable presentation for your design solution.

2 Processor Specification

2.1 Basic Characteristics

• a word size of 16-bits

• memory address/data bus size of 16-bits

• byte addressable memory

• 64K byte main memory

• a 16-bit program status word (PSW) with
status bits. The first two bits are the condi-
tion code bits Z and N; these bits are con-
ditionally set (when IR.S == 1) and de-
note the results of comparisons of the F2
instruction result to the values zero (Z=1-
equality to zero; N=1-less than zero). In
addition, a third bit denotes execution in ei-
ther of privileged or user mode (some oper-
ations are prohibited in user mode). The re-
maining bits control operations/constraints
in the memory space that are not addressed
in this project.

• 16 instructions, 2 of which can be executed
only in privileged mode. Attempt to execute
these 2 instructions in user mode will cause
a program check violation.

• 8 16-bit General Purpose Registers (Reg).
Register 0 (Reg[0]) always holds the value 0
no matter what value is assigned to it.

• a 16-bit program counter (PC) which is also
Reg[7]

• a 16-bit count-down timer that causes a
timer interrupt when it reaches zero pro-
vided the machine is executing in user mode.
Timer interrupts are ignored when execut-
ing in privileged mode.

• 2’s complement number representation

February 8, 2024 – 17 : 31 1



EECE 3026 Project 3, revision 1

2.2 Instruction Format

This is described more fully below. In this in-
struction set, there are two instruction formats
(F1 and F2) encoded as follows:

70 12 153 9

Opcode Rd Offset

Rs1 Rs2Opcode S RdR I

F1:

F2:

P

5

With operand adderessing defined as:

F1 instructions:

• OP1 = GPR[IR.Rd]

• if IR.P==0 OP2 = sign extended(IR.Offset)

• if IR.P==1 OP2=PC+sign extended(IR.Offset)

F2 instructions:

• if IR.S set the condition codes (described below)

• if IR.R==0 OP1 = GPR[IR.Rs1]

• if IR.R==1 OP1 = MM[GPR[IR.Rs1]]

• if IR.I==0 OP2 = GPR[IR.Rs2]

• if IR.I==1 OP2 = sign extended(IR.Rs2)

2.3 Instructions

The instruction set consists of 16 instructions
shown in Table 1. The notation GPR[]/MM[] de-
notes respectively the register contents/memory
contents.

The condition codes are conditionally set by
the result from the first and second instruction
formats. The instruction bit IR.S determines if
the execution of the instruction should set the
condition code (1 – Yes, 0 – No). If set, the
condition code bit (N and Z) should be set based
on the value resulting from the operation.

When in user mode (i.e., the PSW privileged
bit (P) is not set), only the first 14 instructions
can be executed. All 16 instructions can be exe-
cuted in privileged mode. Attempting to execute
a privileged instruction when in user mode sig-
nals a program check violation.

2.4 Exceptions

2.4.1 Program Check Violations

When in user mode (i.e., the PSW privileged
bit (P) is not set), only the first 14 instructions
can be executed. All 16 instructions can be exe-
cuted in privileged mode. Attempting to execute
a privileged opcode when in user mode signals a
program check violation. A program check vio-
lation causes the machine to swap the PC, and
PSW as follows:

1. MM[0] = PSW

2. MM[2] = PC

3. PSW = MM[4]

4. PC = MM[6]

2.4.2 Timeout

There exists a count-down timer in the system
that interrupts execution of instructions when
executing in user mode. When this counter
reaches zero, it triggers an internal state bit.
This internal state bit is reset when a new value
is loaded into the clock (by the CLK instruction).
A timeout exception interrupt occurs when the
internal state bit is set and the control unit is at
an instruction boundary (between instructions).
The effects of the interrupt are to modify the
main memory, PC, and PSW in the following
way:

1. MM[8] = PSW

2. MM[10] = PC

3. PSW = MM[12]

4. PC = MM[14]

When executing in privileged mode, the count-
down timer has no effect.

February 8, 2024 – 17 : 31 2



EECE 3026 Project 3, revision 1

Format Name Opcode Description

F1: ADDI 0 GPR[IR.Rd] = OP1 + IR.Offset
F2: ADD 1 GPR[IR.Rd] = OP1 + OP2
F2: SUB 2 GPR[IR.Rd] = OP1 - OP2
F2: AND 3 GPR[IR.Rd] = OP1 and OP2
F2: OR 4 GPR[IR.Rd] = OP1 or OP2
F2: NOT 5 if OP2 == 0 then GPR[Rd] = not OP1

else GPR[IR.Rd] = not OP2
F1: SHFT 6 if IR.P == 0 then GPR[IR.Rd] = shift right(OP1) by IR.Offset[12−15]

else GPR[IR.Rd] = shift left(OP1) by IR.Offset[12−15]

F1: LD 7 GPR[IR.Rd] = PC + IR.Offset
F1: LDI 8 GPR[IR.Rd] = IR.Offset
F1: ST 9 MM[PC + IR.Offset] = GPR[IR.Rd]
F1: BRN 10 if CC.N then GPR[Rd] = PC; PC = PC + IR.Offset
F1: BRZ 11 if CC.Z then GPR[Rd] = PC; PC = PC + IR.Offset
F1: BR 12 GPR[Rd] = PC; PC = PC + IR.Offset
F1: RTS 13 PC = GPR[Rd] + IR.Offset

F1: CLK 14 Set timer to MM[PC + IR.Offset]
F1: LPSW 15 PSW = MM[PC + IR.Offset]

Notes:

• All references to the IR.Offset field are to be sign extended

• shift right arithmetic (preserving the sign)

• shift left is logical

• IR.Offset[12−15] denotes the rightmost 4 bits of the IR.Offset field

• The IR.S bit function is further described in Sections 2.2 and 2.3

• Remember, the PC is stored in GPR[R7]

Table 1: Instruction and their Semantics

3 Restrictions

1. You may use any number of internal regis-
ters to hold intermediate values. You must
restrict yourself to the single bus paradigm
— no point-to-point connections are al-
lowed.

2. You may use a constant ROM in this design
provided it contains 8 or fewer constants.
You do not have to develop a gate level de-
scription of the ROM, but you must pro-

vide an informal description of its operation.
You may assume that it operates sufficiently
fast to provide data to the bus in the same
clock cycle as it is needed.

3. Assume that all memory operations are syn-
chronous. You do not have to develop a gate
level implementation of the main memory;
however, you do have to give an informal
description of its interface.

4. You can design a circuit to evaluate the con-

February 8, 2024 – 17 : 31 3



EECE 3026 Project 3, revision 1

dition codes (establishing if a value is zero
and/or negative) and attach that circuit to
the Y, Z, or any temporary registers (not
including the IR, GPR, MAR/MDR, PSW,
etc) on the bus. The result of the testing
circuit can be routed directly to the PSW
inputs for the N and Z bits. You will have
to design/implement a PSW latch that has
some enable pin to set the N and Z bits.

5. You must develop gate level descriptions of
all components except: multiplexers, demul-
tiplexers, encoders, decoders, and flip-flops.
You can use tri-state, and, or, not, xor,
nand, and nor logic gates in your solution.

6. Ignore the details regarding the implemen-
tation of the count-down timer and define
only its interface. You must however, use
the system clock to pulse the count-down
timer.

7. The currently assigned opcode values are
only for illustration purposes and you may
modify them in order to obtain optimization
points.

4 Extra Qualifications

1. You can have an ALU function to increment
one of the inputs by 2 (but you have to de-
sign the circuit).

2. The PC is also stored as GPR[7]. Since
the general purpose register do participate
in some addressing modes, you must up-
date/increment the PC before you begin de-
coding the operands.

5 The Report

Your report must clearly document your design
solution. The documentation should include in-
formal descriptions of the various components in

your solution. It should should include the con-
trol signals written out in a logical structure that
can be meaningfully understood by someone not
part of the project team. The synthesis of the
control unit circuit should be presented, includ-
ing the finite state automata and the next state
table.
There are no limits on the length of the report.

Good luck.

6 Change Log

Revision 0: 2/1/2024

• Initial Version

Revision 1: 2/8/2024

• Added tri-state gates to the list of
permitted gates.

February 8, 2024 – 17 : 31 4


