
Computer Organization ECECS 326

Physical Memory Structures

Information for computing systems is stored in mechanisms of the
following type:

1. Random Access Memory (RAM)

• read-write memory (RWM)
• read-only memory (ROM)

2. Content Addressable Memory (CAM) or Associative Memory (AM)

3. Sequential Access Memory (SAM)

4. Direct Access Memory (DAM)

Physical Memory Structures 1



Computer Organization ECECS 326

RAM

Data is stored and written directly from a given address. Regardless of
the location of the data, all accesses require the same amount of time.

Read-write memory (RWM): Data can be read or written to/from any
location. Data is usually stored in terms of words. A RWM with 2n

words and m-bits per word has two critical registers: an n-bit
memory address register (MAR) and an m-bit memory data register
(MDR).

Read-only memory (ROM): Data can only be read from each
location. Data is usually fixed in the words of a ROM either by the
manufacturer or by some off-line manner.

RAM 2



Computer Organization ECECS 326

AM: Associative Memory

Associative Memory (AM): Data is read or written into memory
locations based upon a tag field associated with the data.

key

datamatch bit

tag word
tag word

tag word

AM: Associative Memory 3



Computer Organization ECECS 326

SAM: Sequential Access Memory

Sequential Access Memory (SAM): Data is read/written in a
sequential manner. That is, as each new datum to be read/written, it
is stored after the previously read/written datum. Typically, the data
is stored on an extended medium such as tape that is passed over a
data read/write head.

SAM: Sequential Access Memory 4



Computer Organization ECECS 326

DAM: Direct Access Memory

Direct Access Memory (DAM): A combination of random-access and
sequential-access memory. Data is stored on a rotating disk or
drum. The disk (drum) is organized into tracks onto data is
sequentially stored. The read/write heads are then positioned
(random-access) over the appropriate track and the data is then
read/written (sequentially) a the appropriate place on the rotating
disk.

DAM: Direct Access Memory 5



Computer Organization ECECS 326

Interleaved Memories

A use of several smaller memory modules that collectively form larger
memories.

• 2 types: High-Order Interleaving
Low-Order Interleaving

• Can be and are used together:

– each SIMM/DIMM is composed by Low-Order interleaving
– motherboard memory banks constitute High-Order interleaving

Interleaved Memories 6



Computer Organization ECECS 326

High-Order Interleaving

Distribute addresses in M = 2m modules so that each module i
(0 ≤ i < M ) contains consecutive addresses i2n−m to (i+ 1)2n−m − 1.
High order address bits enable the memory module. Low order bits
select the word in the module.

2−4 Decoder

Data 

Address Enable

0 21

i−1

i

2i−1

2i

3i−1

3i

Effective Address

High-Order Interleaving 7



Computer Organization ECECS 326

Low-Order Interleaving
Distribute the addresses so that consecutive addresses are located
within consecutive modules. Low order address bits enable the
memory module. High order bits select the word in the module.
Modules easily combined to build wider data widths (all modules are
enabled on each R/W).

0 4 8 2 61 5 9 3 7

2−4 Decoder

Data 

Address

Enable

Effective Address

Low-Order Interleaving 8



Computer Organization ECECS 326

The Memory Hierarchy

Basic Problem: How to design a
reasonable cost memory system that
can deliver data at speeds close to
the CPU’s consumption rate.

Current Answer: Construct a memory
hierarchy with slow (inexpensive,
large size) components at higher
levels and with fastest (most
expensive, smallest) components at
the lowest level.

Migration: As it is referenced, migrate
data into and out-of the lowest level
memories.

I−Cache D−Cache

CPU

Cache (L2)

Tape

Disk

Main Memory

The Memory Hierarchy 9



Computer Organization ECECS 326

How does this help?

• Programs are well behaved and tend to follow the observed
“principles of locality” for programs.

Principle of temporal locality: states that a referenced data object
will likely be referenced again in the near future.

Principle of spatial locality: states that if data at location x is
referenced then it is likely that a nearby location (x+∆x) will be
referenced in the near future.

• Also consider the 90/10 rule: A program executes about 90% of its
instructions from about 10% of its code space.

How does this help? 10



Computer Organization ECECS 326

Cache Memory Overview & Structures

• Similar to paged virtual memory w/ fixed-sized blocks mapped to the
cache (from next higher level memory).

• Due to speed considerations, all operation implemented in
hardware.

• 4 types (mapping policies)

– direct mapped
– fully associative
– set associative
– sector mapped (not discussed further)

Cache Memory Overview & Structures 11



Computer Organization ECECS 326

Direct Mapped
If cache is partitioned into N blocks then cache block k will contain only
memory blocks k+nN (n = 0,1,...). Memory addresses are formed as (s,
b, d) where s is the memory tag (n), b is the cache block (k) and d is
the word in the block.

tag

tag

tag

Block 0

Block 1

Block N−1

Block 0

Block 1

Block N−1

Block N

Block N+1

b

s

Main Memory

Cache

Lookup Algorithm

if cache[b].tag = s
then return cache[b].word[d]
else cache-miss

Direct Mapped 12



Computer Organization ECECS 326

Fully Associative

Any block of MM can be mapped into any cache block. Memory
addresses are formed as (s, d) where s is the memory tag, and d is the
word in the block.

Block 0

Block N

Block M

Block 0

Block N−1

tag

tag

tag

s

Block i

Cache

Main Memory

Lookup Algorithm

if ∃ k : 0 ≤ k < N ∧ cache[k].tag = s
then return cache[k].word[d]
else cache-miss

Fully Associative 13



Computer Organization ECECS 326

Set Associative

Compromise between direct and fully associative caches. Basic idea:
divide cache into S sets with E = N/S block frames per set (N total
blocks in cache). Memory addresses are formed as (s, b, d) where s is
the memory tag, b is the cache set pointer, and d is the word in the
block.

Block 0

Block 1

Block S−1

Block S

Block S+1

Block 0tag

tag

Block 0tag

Block 0tag

tag

s

tag

Set 0

Set 1

Set S−1

Block E−1

Block E−1

Block E−1

Cache

Main Memory

Lookup Algorithm

if ∃ k : 0 ≤ k < E ∧

cache[b].block[k].tag = s
then return

cache[b].block[k].word[d]
else cache-miss

Set Associative 14



Computer Organization ECECS 326

Cache Block Loading/Writing

• Read through

• Critical word first

• Write through (write merging)

• Write back

• Write allocate/no-allocate

Cache (L2)

Main Memory

I−Cache D−Cache

CPU

Cache Block Loading/Writing 15



Computer Organization ECECS 326

Unified or Split Caches

Cache (L2)

Main Memory

I−Cache D−Cache

CPU

Unified or Split Caches 16



Computer Organization ECECS 326

Virtual Memory

Addresses used by programs do not correspond to actual addresses
of the program/data locations in main memory. Instead, there exists
a translation mechanism between the CPU and memory that
actually associates CPU addresses (virtual) with their actual
address (physical) in memory.

Virtual
Address

Physical
Address

Address
TranslationCPU

Main
Memory

Two most important types:

• Paged virtual memory

• Segmented virtual memory

Virtual Memory 17



Computer Organization ECECS 326

Demand Paged Virtual Memory

• Logically subdivide virtual and physical spaces into fixed sized units
called pages.

• Keep virtual space on disk (swap for working/dirty pages).

• As referenced, bring pages into main memory (updating page table).

• Need page replacement algorithm: random, FIFO, LRU, LFU

Demand Paged Virtual Memory 18



Computer Organization ECECS 326

Paged Virtual Memory: Structure

page N−1

page 1
page 0 page 0

page i

page M−1

Main Memory

Program Space

Physical Addresses Virtual Adresses

Paged Virtual Memory: Structure 19



Computer Organization ECECS 326

Paged Virtual Memory: Address Translation

page # page offset
Virtual Adress

Physical Address

page table

dirty bit/other infovalid bit

Paged Virtual Memory: Address Translation 20



Computer Organization ECECS 326

Segmented Virtual Memory

• Organize segments in virtual space by logical structure of program.

• Dynamically build segments in physical space (main memory) as
segments are referenced.

• Keep virtual space on disk (swap for working/dirty pages).

• As referenced, bring segments into main memory (updating
segment table).

• Need segment placement algorithm: best fit, worst fit, first fit.

• Need segment replacement algorithm.

Segmented Virtual Memory 21



Computer Organization ECECS 326

Segmented Virtual Memory: Structure

Main Memory

Program Space

Physical Addresses Virtual Adresses
segment 0

segment M

segment 1
segment M

segment 0

segment i

Segmented Virtual Memory: Structure 22



Computer Organization ECECS 326

Segmented Virtual Memory: Address Translation

Virtual Adress

Physical Address

valid bit

+

segment # seg. offset

dirty bit/length/other info

segment table

Segmented Virtual Memory: Address Translation 23



Computer Organization ECECS 326

Combining Paged & Segmented Virtual Memory

• linear segmentation

• name space segmentation

Combining Paged & Segmented Virtual Memory 24



Computer Organization ECECS 326

Segmented-Paged Virtual Memory: Address
Translation

Virtual Adress

+

segment # page # page offset

valid bit

segment table

page table

Physical Address

Segmented-Paged Virtual Memory: Address Translation 25



Computer Organization ECECS 326

The Memory Hierarchy: Who does what to whom

• MMU: Memory management unit

• TB: Translation buffer

• H/W: search to main memory

• O/S: handles page faults (invoking
DMA operation)

– if dirty page, copy out first
– move new to main memory (DMA)

• O/S: context swaps on page fault

• DMA: operates concurrently with
other tasks

Cache (L2)

Disk

Main Memory

I−Cache

CPUMMU

D−Cache

T
B

The Memory Hierarchy: Who does what to whom 26



Computer Organization ECECS 326

Memory Mangagement Unit

• Manages memory subsystems to main memory

• Translates addresses, searches caches, migrates data (to/from main
memory out/in)

Memory Mangagement Unit 27



Computer Organization ECECS 326

Translation Buffer

• Small cache to assist virtual → physical address translation process

• generally small (e.g., 64 entries), size does not need to correspond
to cache sizes

Translation Buffer 28



Computer Organization ECECS 326

Satisfying A Memory Request

• L1 & L2 use physical addresses

• paged virtual memory

• ignoring details of TB misses

Satisfying A Memory Request 29



Computer Organization ECECS 326

Satisfying A Memory Request

Satisfied in L1 cache:

1. MMU: translate address

2. MMU: search I or D cache as indicated by CPU, success
(sometimes simultaneously with translation)

3. MMU: read/write information to/from CPU

Satisfying A Memory Request 30



Computer Organization ECECS 326

Satisfying A Memory Request

Satisfied in L2 cache:

1. MMU: translate address

2. MMU: search I or D cache as indicated by CPU, failure

3. MMU: search L2 cache, success

4. MMU: move information between L1 & L2, critical word first?

5. MMU: read/write information to/from CPU

Satisfying A Memory Request 31



Computer Organization ECECS 326

Satisfying A Memory Request

Satisfied in main memory:

1. MMU: translate address

2. MMU: search I or D cache as indicated by CPU, failure

3. MMU: search L2 cache, failure

4. MMU: move information between memory & L2

5. MMU: move information between L1 & L2, critical word first?

6. MMU: read/write information to/from CPU

Satisfying A Memory Request 32



Computer Organization ECECS 326

Satisfying A Memory Request

Not in main memory:

1. MMU: translate address, failure trap to O/S

2. O/S: page fault, block task for page fault

• O/S: if page dirty
– O/S: initiate DMA transfer to copy page to swap
– O/S: block task for DMA interrupt
– O/S: invoke task scheduler
– O/S: on interrupt continue

• O/S: initiate DMA transfer to copy page to main memory
• O/S: block task for DMA interrupt
• O/S: invoke task scheduler
• O/S: on interrupt:

– update page table
– return task to ready to run list

Satisfying A Memory Request 33



Computer Organization ECECS 326

Translation Buffer Misses?

• Nothing special, it is a cache just like any other cache

• Generally fully associative

Translation Buffer Misses? 34



Computer Organization ECECS 326

Tidbits

• Some pages must be pinned into main memory

Tidbits 35


