The High Performance Computing Lab

The principle studies of this lab are in High Performance Computing with applications to Data Science and Parallel Discrete-Event Simulation (PDES). The work in data science focuses on two areas, namely: (i) Topological Data Analysis and (ii) Privacy Preserving Data Mining. The work focuses on the construction of high performance computing solutions to each of these problems. While much of the focus of our work is with parallel and distributed computing, we also explore randomized and approximate computing methods to accelerate the problems in question. The work in PDES focuses on Optimistically (Time Warp) Synchronized PDES. Our work is primarily with the Time Warp Mechanism. Optimistically synchronized simulators do not strictly enforce the causality relations between events during event processing. Under the Time Warp mechanism, an optimistic simulation solution aggressively processes events and incorporates a rollback recovery mechanism to use whenever a causal violation is discovered. Our studies address parallel simulation on multi-core/many-core nodes and clusters.

Projects in Data Science

Projects in Parallel Simulation

The Lab Creed

Designing and Optimizing Distributed Systems

The following document may help you as you work through the design and optimization of parallel and distributed systems: Butler Lampson, "Hints and Principles for Computer System Design, August 13, 2020.

Previous Projects

Below are examples of previous projects that my students and I have worked on. While I have numerous other previous projects, these ideas remaining interesting to me but, for one reason or another, I am no longer listing them as active projects in my research program.