
Paper 1.2 INTERNATIONAL TEST CONFERENCE 1
1-4244-1128-9/07/$25.00 © 2007 IEEE

Abstract

The Niagara2 System-on-Chip is SUN Microsystem’s
latest processor in the Eco-sensitive CoolThreads line of
multi-threaded servers. This DFT survey of the Niagara2 chip
introduces the RAWWCas memory test, a Hybrid Flop Design
and a fast efficient bitmapping architecture called DMO. It also
showcases some excellent DFT results for this challenging sys-
tem-on-chip design project.

1.0 Introduction

The Niagara2 SPARC chip is truly a Chip Multiproces-
sor, Core Multithreaded, system on a chip. It has eight proces-
sor cores each supporting eight threads. The cores run at
1.4GHz and are connected to 4MB of on-chip L2 cache. The
L2 cache connects to 4 on-chip DRAM controllers which
directly interface to a pair of fully-buffered DIMM channels.
Additionally N2 has an on-chip Network Interface Unit with
two 1 Gb/10 Gb ethernet MACs, and an on-chip PCI-EX con-
troller.

The system on chip nature of Niagara2 poses a number
of DFT challenges. There are eight different clock domains
within the chip and a mixture of full custom, semi-custom, and
ASIC design styles. SERDES blocks [3] are hard IP, acquired
complete with their own DFT architecture which must be inte-
grated into the overall Niagara2 DFT architecture. The entire
functional IO space of the chip is high speed SERDES render-
ing testing with functional vectors difficult and limited. This
makes providing high quality stuck-at and transition test vec-
tors imperative.There are more than 300 SRAMs of various
sizes and functionalities each of which has an MBIST test plan.
There are over one million flops in the design managed in over
forty different scan string configurations and three different
clocking scenarios. Welcome to 65nm SOC design!

2.0 DFT Overview

Niagara2 has a rich set of test and debug features. It is
designed with a robust level sensitive scan architecture and a
variety of scan configurations to support many different test
and debug activities. The stuck-at test coverage requirement is
99% and the transition test requirement is 95%. Every SRAM
and CAM on chip is tested with at-speed MBIST. The MBIST
is rich with diagnostic modes to aid failure analysis, backside

probing, and failure isolation. The SPARC cores have LBIST
and there are shadow scan registers scattered throughout the
chip that capture state and can then be accessed via JTAG
while the chip is running in system. There is support for at-
speed transition test and a novel mechanism for fast efficient
bitmapping of embedded SRAMs.

3.0 Scan Chains

The more than million flops on Niagara2 are organized
into 32 manufacturing scan chains. Every flop on the chip
resides on one of these chains. There is a second slightly dif-
ferent manufacturing scan chain configuration to accommodate
at-speed transition testing. In addition to the two manufactur-
ing scan chain configurations there are eighty four JTAG scan
chain configurations. These are intended for in-system use
during debug and characterization activities. Each of the 32
manufacturing scan chains can be placed between TDI and
TDO for in-system JTAG scan access. The manufacturing scan
chain that contains the JTAG block in the Test Control Unit
(TCU) is understandably altered for JTAG access. Addition-
ally all chains can be concatenated and placed between TDI
and TDO. There are thirty five MBIST scan chains. These
short MBIST chains are intended for rapid programming of
MBIST configuration registers for use during SRAM diagnos-
tic activities. These MBIST chains also provide access to

Design For Testability Features of the SUN Microsystems
Niagara2 CMP/CMT SPARC Chip

Robert Molyneaux, Tom Ziaja, Hong Kim,
Shahryar Aryani, Sungbae Hwang, Alex Hsieh

SUN Microsystems SUN Microsystems
5300 Riata Park Court 410 N. Mary Ave

Austin, Tx. 78727 Sunnyvale, Ca. 94085

Figure 1.0.1: Niagara 2 Floorplan

Paper 1.2 INTERNATIONAL TEST CONFERENCE 2

detailed failure information upon completion of an MBIST
run. Shadow registers scattered throughout the chip have six-
teen JTAG scan chains dedicated to accessing them for in-situ
peeks at the internal state of a running system.

4.0 Hybrid flop design

The test clocking methodology for Niagara2 is LSSD.
The basic edge triggered flip-flop is favored by designers due
to its single high speed clock operation but level sensitive scan-
ning is favored for test due to its high reliability and immunity
to hold time failures.

Figure 4.0.1: Hybrid Design: Level Sensitive Scannable Flip-Flop

The Niagara2 chip employs a hybrid flop design that
operates as an edge triggered flip-flop for functional clocking
but uses two lower speed level sensitive test clocks for scan-
ning. The hybrid flop also supports level sensitive operation in
the event a functional hold time violation is suspected of caus-
ing circuit failure. During debug activities the chip can be
clocked as shown in table 4.0.2

5.0 Stuck-At Test Coverage

The Niagara2 chip achieved 97.5% stuck-at test cover-
age. Further processing of the fault list to account for logic
tested by MBIST brings the test coverage to nearly 98.5%.

A few simple testability guidelines were implemented
at the beginning of the project and the results are evident in the
good test coverage results on this large chip. Library elements
are required to be 100% testable. SRAMs and pass-gate muxs
also receive special attention.

Shadow logic surrounding embedded SRAMs is often a
testability problem in microprocessors. Early in the design
phase DFT, Logic design, and SRAM circuit designers got
together to address the shadow logic issue. It turned out that

Clocks
Off

Load
Master

Clocks
Off

Load
Slave

Clocks
Off

L1clk 1 0 1 1 1

Aclk 0 0 0 0 0

Bclk 0 0 0 1 0

Table 4.0.2: Level Sensitive Clocking for Debug

D

SI

Q

Aclk

L1clk

Bclk

Time

the circuit designers preferred to bound the inputs and outputs
of SRAMs with flops in order to better characterize their cir-
cuits. On the other hand the logic designers preferred to have
the SRAMs completely unbounded so they could take advan-
tage of unused cycle slack. The compromise decision was
made to design all SRAMs with input flops thereby bounding
the inputs for ease of characterization. The outputs would
remain unbounded so the logic designers could insert logic to
use any left over cycle time after an SRAM access. This
played very well into the DFT cause. Shadow logic is non-
existent in the design upstream from any SRAMs. There is
only an issue of shadow logic downstream from some SRAMs.
Some SRAMs are simple and can easily be modeled as a
Fastscan CRAM. Others are equipped with a data bypass func-
tion and still others drive known values when not performing a
read. These behaviors can be modeled to provide a mechanism
to test most if not all the downstream shadow logic.

Pass-gate muxs are a recurring testability issue. Early in
the design phase these circuits were not available in the library.
Only after logic design was finished and a round of timing had
been completed were pass-gate muxs made available in the
library to solve timing and space issues. All pass-gate muxs
are equipped with a weak pull down transistor on the output
node to provide testability for the select logic. Additionally the
selects are equipped with priority encoding logic that resolves
multiple active selects before they reach the mux select inputs.
This relieves the ATPG tool from having to determine a safe
state for all the tri-state nodes for every test vector. This is a
tremendous performance boost for Fastscan. The priority
encoder on the select inputs also provides for the all-off state
guaranteeing s-a-1 testability of all the selects.

6.0 Transition and Path Delay Testing

Transition test coverage on Niagara 2 is approximately
82%. The many different clock domains added to the difficulty
of creating transition test vectors as well as inhibiting high cov-
erage. To avaoid multi-domain race conditions transition vec-
tors used only one clock per vector. Because of this, clock
domain crossings were not tested with transition test vectors.

In addition to transition testing Niagara 2 implements
path delay testing for the cores. More than 15,000 paths in
each core are tested at speed with Fastscan derived path delay
test vectors. Because the chip IO is exclusively high speed
SERDES the ability to perform functional testing is limited.
This heightens the importance of high quality at-speed transi-
tion and path delay testing.

Figure 6.0.1: Transition Test Control

RCLK
PLL

start
counter TCU

AClk

BClk

sync flop

L2Clk

Clk_Stop

Cluster
Header

AClk

BClk

ACLK

SysClk

BCLK

ACTestTrig

Pa
ck

ag
e

Pi
ns

co
un

te
r

Paper 1.2 INTERNATIONAL TEST CONFERENCE 3

Transition testing and path delay testing utilize the same
clock control mechanism. The fundamental design of the tran-
sition test controller is similar to that described in Pyron and
Molyneaux, et al. [2] The two key factors are to keep the on-
chip PLL running throughout the entire testing process and to
decouple the relatively slow tester from the high speed signals
needed to test the on-chip logic. In order to accomplish the
first goal it is necessary to establish a different scan configura-
tion than that used for DC stuck-at testing. It is necessary to
remove from the scan chains any flops needed to keep the PLL
locked and running. An ACTest Pin is added to the package in
order to signal the TCU that transition testing is taking place.
In order to accomplish the second goal a trigger and control
circuit is designed to allow the ATE to trigger the test in an
asynchronous manner. This scheme also allows the ATE to
perform scanning with the same ACLK, BCLK, and ScanEn
signals as it uses in DC stuck-at testing at any convenient
speed.

Figure 6.0.1 shows a simplified diagram of the transition
test control. Throughout the testing process the PLL is locked
and running and the RClk is toggling at 1.4GHz. The transi-
tion test control logic controls the clock stop signals in the
chip. The initial state of clock stop is asserted; this stops the
L2Clk. The ATE asserts ScanEn and toggles ACLK and
BCLK thereby loading a test vector into the chip. Along with
the test vector the test control counter is also loaded with the
desired count. When scanning is complete ScanEn is deas-
serted and ACTestTrig is asserted. This causes the stop signal
to be deasserted and the test control counter to begin decre-
menting. Note that the clock to the test control counter is
always running so it is not affected by its own action of starting
and stopping the clock. When the counter reaches zero it reas-
serts the stop signal and the test is complete. The ATE can
then unload the test results and load in the new vector and
counter value.

7.0 Support for SRAM Access

All of the embedded SRAMs in Niagara2 are tested via
MBIST however during silicon bringup activities it is neces-
sary to read and write them from the JTAG port for effective
debug. The process used to access the SRAMs during debug is
referred to as Macro Test since it relies upon the Macro Test
facility in the Fastscan ATPG tool. Briefly the process involves
scanning the flops bounding the SRAM to the state required to
perform the desired operation at the target address and then
generating a clock to execute the operation within the SRAM.
This scan and clock sequence can be repeated to read or write
the contents of an entire SRAM if desired.

One of the challenges to implementing Macro Test in
Niagara2 is created by the basic architecture of the SRAMs.
Each SRAM is equipped with scannable input flops which is
very good for testability of logic driving the SRAM. At the ris-
ing edge of a functional clock the SRAM is designed to operate
on the data present at its boundary, point A, which is before the

scannable input flops. The fact that each SRAM has boundary
flops allows the logic designers to perform a full cycle of logic
work between the previous flop stage and the boundary of the
SRAM. Because of this design it is necessary to understand
the upstream logic and to appropriately load the upstream flops
to perform a Macro Test operation. This adds an undesirable
level of complexity to the SRAM access process.

Figure 7.0.1: SRAM access via Macro Test

This complexity has been removed by putting the input
flops into scan only mode during Macro Test. This prevents
them from updating when the rising clock edge occurs and they
hold their scan value. In this way the Macro Test user can set
up the boundary flops directly to read or write the SRAMs.
This is achieved by routing a special Scan_Enable signal to the
SRAM input flops called SE_SCANCOLLAR_IN. Within the
TCU there is a Macro Test mode bit which can be set by the
user at the beginning of Macro Test operations. When the
Macro Test mode bit is set the SE_SCANCOLLAR_IN signal
is continually asserted. This allows setting the input flops via
scan and also prevents them from updating when a functional
clock is applied.

8.0 Memory BIST

There are 80 MBIST engines in Niagara2 dedicated to
servicing more than 300 unique SRAMs. The SRAMs all have
unique testing requirements driven by address size, bank and
way configurations, data output widths, clocking specifics, and
other factors resulting in each of the engines being unique to
the SRAMs it is servicing. The generic MBIST to SRAM
interface is illustrated in figure 8.0.1.

Note that the MBIST data bus is only 8 bits wide regard-
less of the width of the data input bus of the SRAM. The 8 bits
are fanned out across the actual width of the SRAM data bus at
the SRAM port. This saves a substantial amount of wiring
since the engine is not usually immediately adjacent to the
SRAM. The comparators can easily be shared between neigh-
boring SRAMs further reducing test hardware and wiring
between SRAMs and engine.

SRAM

Logic

At rising edge of clock SRAM
operates on data here

A B

Paper 1.2 INTERNATIONAL TEST CONFERENCE 4

Figure 8.0.1: MBIST Engine to SRAM interface

8.1 What’s all the RAWWCas!

The March C- memory march test [6], as shown in fig-
ure 8.1.1, forms the basis of the test algorithm used on
Niagara2. The March C- test provides excellent DC test quali-
ties and in the AC realm it provides a good write recovery test
but not a read recovery test or a weak bit test.

{⇑(W1); ⇑(R1W0); ⇑(R0W1); ⇓(R1W0); ⇓(R0W1); ⇓(R1);}

Figure 8.1.1: March C- Memory Test

The read recovery test executes a read operation of one
data value immediately followed by a read operation of the
opposite data value. The weak bit test targets bitcells that may
be incapable of driving the bitlines correctly during a read
operation. The worst case scenario for a read operation is
defined as one where each of the bitcells in the target word are
at the opposite polarity than all other bitcells on those bitlines.
The read should be immediately preceded by a write of oppo-
site polarity on the same bitlines. This test is dubbed Read
After Write Worst Case (RAWWCas).

{⇑(W1); ⇑(R1W0); ⇑(R0W1); ⇓(R1W0); ⇓(R0W1); ⇓(R1);

⇑(W0W1
*R0R1

*W1); ⇑(W0); ⇓(W1W0
*R1R0

*W0);}

Figure 8.1.2: March C- Memory Test with RAWWCas

The first six march elements in the test shown in figure
8.1.2 are the basic March C-, the last three march elements are
the RAWWCas test together with a read recovery test. After
march element six is complete the SRAM contains all ones.
March element seven is composed of five actions. Action one
writes zeros to all bits of a target location. The target location
is now at a polarity opposite from all other locations in the
SRAM. Action two writes all ones to a non-target location that
occupies the same bitlines as the target location. The asterisk
indicates that the actions occurs at a non-target location. Action

MBIST Data(7:0)

MBIST RW Cntl

MBIST Address

Functional Data(31:0)

FAIL

Func RW Cntl

Func Address

Distribute 8 bits across 32 bit field

MBIST_ON

MBIST_ON

MBIST_Address_Mix

MBIST_ON

MBIST
ENGINE SRAM

three reads the zeros from the target location. At this point we
have executed a read immediately after a write of opposite
polarity with the worst case background: RAWWCas. Action
four reads the ones from the non-target location to provide a
read recovery bitline test. Finally action five writes the target
location to all ones to match the background and the test is
ready to move on to the next target in the address space. When
march element seven is complete the SRAM is initialized to
the opposite polarity in element eight and the RAWWCas test
is repeated in element nine with the opposite test polarity.

8.2 CAM Test

Each CAM in Niagara2 can be read and written like a
RAM. Figure 8.2.1 illustrates the test model we used for
CAMs. The March C- with RAWWCas test is applied to each
CAM during the RAM test phase. Once RAM testing is com-
plete CAMs are further exercised in order to test the logic gates
that generate the HIT signal.

{⇑(W0);⇑(W1CAM1W0);⇑(W1);⇑(W0CAM0W1);⇑(CAMwalking0);}

Figure 8.2.1: 4-bit 2-row CAM Model with CAM Test Algorithm

March element one initializes the CAM to all zeros.
Element two writes ones to the target word and loads the CAM
data register with ones. The CAM is activated and the HIT sig-
nal is checked to verify that it is active. March element two
completes by restoring the target word to all zeros and moving
on to the next address. At the end of element three all XNOR
gates are verified to drive one for the one-one input condition.
Element three initializes the CAM to all ones and element four
checks for matches the same as element two. In this case the
XNOR gates should drive one in response to the zero-zero
input condition. Element five is designed to verify that each
XNOR gate can detect a mismatch. All the memory cells are
left in the all one state at the completion of element four. Ele-
ment five loads the CAM data register with all ones except a
single zero in the MSB. The CAM is activated and the HIT
signal is checked to be inactive. The CAM data register is then
reloaded with the zero shifted right and a one placed in the
MSB. By walking a single zero across the entire CAM field in
this way each XNOR gate can be verified to cause a mismatch
and be reflected at the HIT signal.

Hit

Memory Cell
CAM Data Register

Paper 1.2 INTERNATIONAL TEST CONFERENCE 5

8.3 MBIST Features

Address Mix - Most SRAMs have multiple physical address-
ing mechanisms such as row decoders, column decoders, bank
or way selects. It is desirable to test each of these address
decoders at speed during the MBIST process. Consider a 128
entry SRAM with 64 rows and 2 columns. Let the SRAM
address bits [5:0] be the row address and bit [6] be the column
select. The MBIST engine produces MBIST address bits [6:0]
mapped to SRAM address bits [6:0]. As the MBIST engine
performs its testing it will always treat MBIST address bit [0]
as the LSB and it will change its value with each new target
address. With this mapping the SRAM row decoder will be
exercised at speed being made to change with every target
address change. The column decoder being mapped to the
MSB will only change every 64 address changes. When the
entire test is complete the MBIST engine will assert the
Address Mix signal and repeat the test. The Address Mix sig-
nal will cause the address mux to map MBIST address bits
[0,6:1] to SRAM address bits [6:0]. This configuration results
in the column decoder being exercised at speed, changing with
each target address change while the row decoder changes only
every other target address change. Refer to the symbol in front
of the address mux in figure 8.0.1.

Data Values - The MBIST engines have four sets of data val-
ues programmed for use: AA/55, CC/33, 99/66, FF/00. In
default MBIST mode the engine will deliver an eight bit data
value AA wherever 1 appears in the data field of the algorithm
and 55 wherever 0 appears. The test is run twice with this pair
or data values, once in standard addressing mode the second
time with Address Mix active. When the second run is com-
plete the data value set is changed to CC/33 and the test is run
twice again, then 99/66 and finally FF/00. There is a user data
register in the MBIST engine that can be loaded with an arbi-
trary eight bit value. When MBIST is run in user data mode
the value in the user data register will be used along with its
bitwise complement. In this mode the test is complete after
executing with this one data set.

User Address - The MBIST engine is equipped with three user
registers: Address_Start, Address_Stop, and
Address_Increment to exercise control over addressing. Using
these registers the user can specify a specific address range to
exercise as well as the size of increments to be taken through
that space. This feature provides an excellent means of detect-
ing intermittent failures in a know address space. In conjunc-
tion with the loop feature it also provides means to create a
tight at-speed loop around a failing address thus facilitating
efficient back side probing.

Loop - The MBIST engine can be put into endless loop mode.
This is especially useful for backside probing activities.

BISI - The MBIST engine has a Built-In Self Initialization
Mode. This is run as part of Power On Reset to initialize all

SRAMs to the zero state. BISI consists of a write of all zeros
to each address.

8.4 Some Unique Challenges

The MBIST interface and test algorithms described in
the preceding sections constitute what we have come to call the
“Vanilla” MBIST solution. Perhaps half of the SRAMs on
Niagara2 received the vanilla treatment while the remainder of
the SRAMs had some unique complicating feature requiring
substantial customization of the MBIST engine servicing them.

8.4.1 Test Hardware Reduction

In an effort to minimize test hardware, comparators are
shared between neighboring SRAMs whenever possible.
Additionally, SRAMs with a data output bus larger than 64 bits
are tested in segments with the entire memory test being per-
formed as many times as is needed to cover all segments. Seg-
mentation is performed by introducing a mux in the SRAM test
data output path as shown in figure 8.4.1.1. In this way the test
overhead is constrained to a single 64 bit comparator bank plus
muxing. Wiring from SRAM to comparator is kept to just 64
wires.

Figure 8.4.1.1: Partitioning data paths and sharing a comparator bank

8.4.2 FIFO Memories

Niagara2 has more than 200Kbits of FIFO memories
which are used to pass data between two different on-chip
clock domains hence their read and write clocks operate at dif-
ferent frequencies. This poses a challenge to the vanilla
MBIST architecture which expects the read port, the write port,
and the MBIST engine to all reside in the same clock domain.
In order to keep the problem manageable it was decided to
equip each FIFO write port with a custom clock mux. A mux
control signal from the MBIST engine gives the read clock
control over the write port during MBIST operation. In this
way the FIFO operates entirely in the read clock domain during
MBIST and of course the engine is placed in the read clock
domain.

8.4.3 Double-Pumped Memories

The Network Interface Unit (NIU) requires a number of
SRAMs that are capable of being read and written in the same
cycle. This is usually implemented by designing a two port
SRAM. The Niagara2 memory team has come up with a solu-

SRAM

64 256

8

MBIST Data

MBIST_Compare_Select

SRAM

128

Functional Data Path

Functional Data Path

MBIST_Array_Select

64

64

MBIST_Compare_Select
FAIL To MBIST Engine

Paper 1.2 INTERNATIONAL TEST CONFERENCE 6

tion to this need that uses high speed one port SRAMs that are
used in other parts of the chip. A 2X clock domain is created
inside the SRAM custom block and the memory is run at twice
the clock speed as the surrounding logic. In this way a read
and write operation can occur on consecutive clock cycles
within the SRAM custom block and appear to the surrounding
logic as if they had been executed on the same clock cycle.
Since the MBIST engines supporting these double-pumped
memories are designed as part of the NIU logic, they runs at
the normal NIU clock frequency. The vanilla MBIST algorithm
has therefore been modified to test simultaneous read and write
operations. March elements 2-5 in the test algorithm shown in
figure 8.1.2 consist of consecutive Read and Write operations
at the same address. For these double pumped arrays those
operations occur simultaneously.

8.4.4 L2Data Cache: Two Cycle Access

The 4MB L2Data Cache is partitioned into eight banks
with each bank partitioned into two sub-banks, top and bottom.
Circuit specifications of this SRAM prohibit access to the
same sub-bank on consecutive cycles. Top and bottom sub-
banks do however share some address decoder circuitry and so
it is desirable to exercise consecutive cycle accesses on one
then the other sub-bank. The test algorithm of 8.1.2 was modi-
fied to jump back and forth between the top sub-bank and the
bottom sub-bank on consecutive cycles. The modified algo-
rithm is shown here in figure 8.4.4.1. A superscript has been
added to each operation to indicate top or bottom sub-bank.

{⇑(W1
TW1

B); ⇑(R1
TR1

BW0
TW0

B); ⇑(R0
TR0

BW1
TW1

B);

⇓(R1
TR1

BW0
TW0

B); ⇓(R0
TR0

BW1
TW1

B); ⇓(R1
TR1

B);

⇑(W0
TW0

BW*
1

TW*
1

BR0
TR0

BR*
1

TR*
1

BW1
TW1

B);

⇑(W0
TW0

B); ⇓(W1
TW1

BW*
0

TW*
0

BR1
TR1

BR*
0

TR*
0

BW0
TW0

B);}

Figure 8.4.4.1: Memory Test for L2Data Cache

8.4.5 CAM data needs full data input bus

One of the challenging aspect during the implementa-
tion of CAMBIST was how to provide the lookup-data for the
walking 0 and walking 1tests without routing a full width data
bus from the MBIST engine to the CAM. We created a CAM-
BIST data register local to each CAM. Each CAMBIST data
register is configured as a shift register and is also equipped
with initialization circuitry. Two control signals from the
MBIST engine to the CAMBIST data register provide for all
needed functions in the walking 0 and walking 1 tests. The
INIT control signal causes the register to load all ones with a
zero in the MSB. A SHIFT signal causes the register to shift
its contents right with a wrap from LSB to MSB. A separate
CAM signal activates the CAM operation to perform the test.
By using this method we were able to avoid routing a large
amount of data signals from the mbist engine to CAMs and still
achieved effective CAM tests.

8.4.6 TCAM

There is a Ternary CAM located in the NIU block which
is responsible for ethernet packet processing. Each TCAM cell
has a mask-bit(m) and a data-bit(d). When a mask bit is set
to’0’ a match occurs regardless of the status of the data bit. The
mask and data bits share common data-in and data-out lines for
read and write operations. In the event of a multiple row hit,
priority encoder logic reports the smallest matched address.

An MBIST engine has been designed to test the read,
write, and compare operations of the TCAM. The read/write
basic operations are covered in the same manner as described
in section 8.1. The TCAM’s compare operation is exercised by
implementing the algorithm shown in table 8.4.6.1 based on
the vanilla CAM test presented in section 8.2 Each test
sequence is designed such that it can be independently run for
characterization and bring-up purposes.

9.0 Direct Memory Observe

Bitmapping of embedded SRAMs is a critical activity in
the early stages of chip bringup, especially in a new technol-
ogy. MBIST is an effective test mechanism but does not lend
itself unassisted to bitmapping activity. Muench et al describe
an MBIST+ procedure that calls for running MBIST to a stop-
ping point then scanning out the read data from a scannable
register. This action is repeated moving the stopping point
with each run to access subsequent SRAM locations. The most
notable feature of this procedure is the excessive amount of
time it takes. We have designed a fast efficient mechanism to
take advantage of the existing MBIST resources for bitmap-
ping applications. By simply routing the data output bus from
the embedded SRAM to dedicated package pins the output data
can be Directly Observed at the tester during MBIST; Direct
Memory Observe (DMO). This has the desirable qualities of
being an at-speed stimulus of the SRAM along with easy from-

Test Sequence Explanation

⇑(Wm1) Set all mask bits to 1

⇑(Wd0); ⇑(Wd1CAM1Wd0); Match with all data 1’s

⇑(Wd1); ⇑(Wd0CAM0Wd1); Match with all data 0’s

⇑(Wd1); ⇑(CAMwalking0); Mismatch: walking 0 across bits

⇑(Wd0); ⇑(CAMwalking1); Mismatch: walking 1 across bits

⇑(Wd1); ⇑(Wm0CAM0Wm1); With mask bits 0 and opposite values
in data bits, still should match!

⇑(Wd1); ⇑(CAM1Wd0); Testing priority encoding:
hit-addr = current_address

⇑(Wd0); ⇑{CAM0Rm1}; Simultaneous compare and read; read
should also happen; hit-addr = 0

Table 8.4.6.1: TCAM Test Sequence

Paper 1.2 INTERNATIONAL TEST CONFERENCE 7

the-pins observation for the tester. There are two major chal-
lenges to applying this approach: excessive global wiring and a
speed mismatch between SRAMs and IO.

The largest arrays on the chip were targeted for DMO.
The ICache and DCache in the cores, the L2Data and L2Tag
which are partitioned into eight banks as seen in figure 1.0.1,
and fifteen of the largest SRAMs in the Ethernet Network
Interface Unit. Bit reduction is performed on the MBIST legs
of all of the SRAM data output buses as described in section
8.4.1. DMO data buses from SRAMs within a cluster are
muxed together before leaving the cluster. In this way the
DMO data bus from any cluster back to the TCU is no more
than forty bits. The DMO data bus from the TCU to the IO
block is forty bits.

The IO blocks for the debug port operate at 350MHz
while the SRAMs in the cores and L2 operate at 1.4GHz; a
speed mismatch. To solve this problem the TCU is equipped
with time multiplexing logic. It takes the SRAM data in at
speed and performs sampling based on a user programable reg-
ister. In one configuration it may sample and hold 1.4GHz
SRAM data for four clock cycles and thereby present a data
rate of 350MHz to the IOs; within the capability of the IOs to
respond and the tester to strobe. In order to get all the SRAM
data to the IOs it is necessary to run the MBIST four times
changing the sampling offset while keeping the same sampling
rate for each run.

10.0 Logic BIST

The SPARC cores in Niagara2 are equipped with
STUMPS [1] architecture LBIST with individual MISR chan-
nel masking. For purposes of LBIST, the cores are partitioned
into fourteen scan chains with the longest chain being about
eight thousand flops. The on chip PLL is locked and running
during the execution of LBIST in order to provide for at-speed
testing. Built into each cluster clock header is a clock stop
function used by the TCU to stop clocks in response to a debug
event in preparation for a scan dump. The LBIST engine con-
trols the stop function to the core cluster header. It then per-
forms enough scan cycles to fill all the scan chains. Once the
chains are filled the LBIST engine deasserts the clock stop sig-
nal for two core clock cycles and the at-speed test is executed.
An interesting chicken-and-egg challenge arose when we real-
ized that the LBIST logic itself is part of the core cluster and
was stopping its own clocks as part of the test sequence. It was
necessary to separate the LBIST logic from the core logic with
regards to cluster clocking control in order to make the scheme
function. Extra care was taken to control skew between the
core clock domain and this tiny new LBIST clock domain. The
clock stop signal is the only at-speed signal that crosses the
LBIST/core domain boundary.

Figure 10.0.1: LBIST Block Diagram for SPARC Cores

In order to calculate LBIST test coverage the core is
modeled in Fastscan as if all clocking and scan controls are
available at the model boundary. The outputs of the PRGP are
treated as virtual scan inputs and the inputs to the MISR are
treated as virtual scan outputs. A single stuck-at pattern is gen-
erated and written out giving us the topography of the LBIST
scan chains. Then a simple PRPG emulator is written in C
allowing us to determine the contents of the scan chains at the
end of every LBIST scan phase. The contents are then written
out as vectors and the final set of vectors are fault simulated in
Fastscan. MISR values will be determined empirically. Final
LBIST coverage numbers are not yet available.

11.0 1149.6 Support

PCI-E and Ethernet require AC-coupled differential
interconnections on their SERDES interface. IEEE Std. 1149.6
extends Std. 1149.1 boundary scan structures and methods in
order to ensure simple, robust, and minimally intrusive bound-
ary-scan testing of advanced digital networks [4]. Niagara2
supports IEEE Std. 1149.6. with both AC-test instructions,
EXTEST_PULSE and EXTEST_TRAIN. There is also a 210
pin debug port which utilizes standard IO signaling. The
debug port IOs support JTAG 1149.1 boundary scan testing.

12.0 Summary

The SUN Microsystems Niagara2 System on a Chip is a
significant DFT challenge. With well chosen testability guide-
lines in place the team has been able to achieve greater than
98% stuck-at test coverage. Embedded SRAMs are covered
completely by at-speed MBIST equipped with a rich feature
set supporting debug, bitmapping, and failure analysis. We
have introduced a number of original DFT solutions. A hybrid
flop design that combines the design advantages of edge trig-
gered flip-flops with the hold time immunity of LSSD master-
slave latch designs. We have presented the RAWWCas weak
bit memory test. We have also presented Direct Memory
Observe, a useful combination of MBIST with direct pin
access to greatly facilitate embedded SRAM bitmapping.
Clock domain management across the chip posed a significant
challenge for debug clock control and the reliable application
of scan test vectors crossing clock domain boundaries. LBIST

PRPG

MISR

Scan String 1

Scan String 2

Scan String 3

Scan String 14 C
hannel M

ask R
eg

Paper 1.2 INTERNATIONAL TEST CONFERENCE 8

embedded in reusable IP such as the processor core creates the
possibility for completely independent self test of that block in
future integrations.

Acknowledgments

The authors would like to acknowledge SUN colleagues
Ray Heald and PJ Tan for their role in developing the RAWW-
Cas memory test. And Paul Dickinson for his participation in
the development and productization of the Direct Memory
Observe feature.

References

[1] P. H. Bardell and W. H. McAnney, Self-Testing of Multichip
Logic Modules, Proceedings ofthe 1982 IEEE Interntional Test
Conference, Nov. 1982, pp. 200-204.

[2] C.Pyron, M.Alexander, J.Golab, G. Joos, B.Long, R.Molyneaux,
R.Raina, N.Tendolkar, DFT Advances in the Motorola
MPC7400, a PowerPC G4 Microprocessor, Proceedings of the
1999 IEEE International Test Conf., Sept. 1999, pp141

[3] I.Robertson, G.Hetherington, T.Leslie, I.Parulkar and R.Lesniko-
ski, Testing High-Speed, Large Scale Implementation of SerDes
I/Os on Chips, Proceedings IEEE International Test Conference,
2005.

[4] IEEE Std 1149.6-2003, IEEE Standard for Boundary- Scan Test-
ing of Advanced Digital Networks

[5] R.Muench, T.Munns, W.C.Shields, Bitmapping the PowerPC
604 Cache Using ABIST, Teradyne User Group Conf, April
1996.

[6] A. J. van de Goor, Testing Semiconductor Memories: Theory and
Practice, John Wiley & Sons, New York, USA, 1991.

